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1 Introduction

The purpose of this bachelor thesis research project is to provide information about the structure
of modules over the locally finite Lie algebra sp.,. Any finite-length module M over a Lie algebra
g has well-defined socle and radical filtrations. If these two filtrations coincide we say that the
module M is rigid. The following questions about an arbitrary module are interesting: What are
the socle and radical filtrations of M7 What are the lengths of these filtrations? Is M rigid? The
answers to these questions help to estabilish links between these filtrations and other filtrations of
M, and therefore can provide essential information on the structure of M.

We are interested in filtrations of the tensor modules of sp_ . The results obtained in [styrk |,
[weiss | and [cohen | are going to be particularly influential in proving our main result. [styrk
| extends some results of Weyl to the classical locally finite Lie algebras gl , sls, $p, and s0,
and presents beautiful descriptions of the structure of their tensor representations. One of the
most interesting results in [styrk | is the decomposition of tensor representations of the classical
locally finite Lie algebras gl , sp., and so., into indecomposable direct summands. Based on
V.Serganova’s observations, [weiss | proves that some indecomposable direct summands of gl__-
tensor modules are non-rigid. In the paper [styrk |, it is proven that the tensor modules of the
classical locally finite Lie algebras gl and sp_ are injective. This beautiful argument is going to
help us to show that some indecomposable direct summands of tensor representations of sp_, are
not rigid.

We started this project by studying the theory we need to understand the classical Lie algebra
5P, and its tensor modules. Later we performed computations of their socle filtrations using the
results from [styrk |. The main results along with the computed diagrams are presented at the
end of this paper.

Throughout this paper we are going to work over the field of complex numbers C.

2 Preliminaries
We start our work by recalling the notions we will need about semisimple modules. Let M be a
module over a ring or a Lie algebra R.

Definition 2.1. M is called simple if it has no proper submodules, and M is called semisimple
if it is a direct sum of simple submodules.

Definition 2.2. Let M be a nonzero module. M is said to be indecomposable if it cannot be
expressed as a direct sum of two nonzero submodules. Otherwise it is called decomposable.

Theorem 2.1. For any module M the following statements are equivalent:

(1) M is a direct sum of simple submodules.
(2) M is the sum of all its simple submodules.

(8) Any submodule N C M admits a direct complement in M i.e a submodule K C M such that
M =N oK.

Proof: 77 = 77 is obvious.
?7? = 77 Consider the set A of all submodules of M which intersect N trivially

A={LcM|LNN ={0}}.

A is non-empty since {0} € A, A is partially ordered by inclusion, and every chain of submodules
in A has an upper bound (the union of all submodules in the chain is an element of A). By Zorn’s
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lemma, A contains a maximal element K. By assumption, M = %.5; for all simple submodules
S; C M. We claim that N @ K = M. Indeed, if there is a simple submodule S C M such that
S ¢ N@K, then (N @ K)NS = {0} by the simplicity of S. Hence, (S+ K)N N = {0}, therefore
S + K is contained in A. On the other hand, S + K properly contains K, which contradicts the
maximality of K.

?7? = 7?7 First we show that a stronger version of (3) applies: if N C M is a submodule, then
for every submodule L C N there exists a submodule L’ C N such that L ® L’ = N. Indeed, as
L C M, L has a complement L” in M, i.e, L& L" = M. Consider L'’ = L "N C L”. Then
L'NL={0}and L' + L = N. Therefore, N =L@ L.

Now consider

B:={LC M| L=@a&S5,; where S; C L are simple}.

The set B is non-empty and is partially ordered: L = @5; < L' = @S/ if for any 4, there exists
i’ such that S; = S.. Moreover, Zorn’s condition is clearly satisfied. Applying Zorn’s lemma to
B yields a maximal element K of B. We claim that K = M. Indeed, if K C M, by (3) there is
N C M such that K ® N = M. If N contains a simple submodule N’ C N, then K & N’ € B,
contradicting the maximality of K.

Therefore, in order to finish the proof we need to show that IV contains a simple submodule. If N
is simple there is nothing to prove. If N is not simple, fix a nonzero = € N such that

C := {P C N|P is nonzero and P Z z}

is non-empty. Then C' is ordered by inclusion and satisfies Zorn’s condition. Let Y be a maximal
element of C. Then N = X @Y for some submodule X C N. Clearly, X is generated by x. But
then X is simple as otherwise Y & X’ € C for any submodule X’ C X, ¢ X'. This shows that N
contains a simple submodule, and the proof is complete. B

2.1 Loewy filtrations

Let M be an R—module.

Definition 2.3. A filtration of M is a chain of nested submodules of M
"'CMiCMZ'JrlC... (1)

A filtration is called finite if there are only finitely many distinct modules in the set {M;}. The
number of distinct non-zero proper submodules of M in the chain (1) is called the length of the
filtration.

Definition 2.4. A filtration is semisimple if the quotients M;11/M; are semisimple whenever
NnONZEro.

In this research we are interested only in semisimple filtrations.

Definition 2.5. We call a finite filtration of M a Loewy filtration if there is no semisimple
finite filtration of M with smaller length.

Below we are going to give important examples of Loewy filtrations.

Let R be a C-algebra and M be an R-module.

Definition 2.6. The socle of M is defined to be the largest semisimple submodule of M, in other
words, socM is the sum of all simple submodules of M. If there are no simple submodules of M,
we set socM = 0.
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We define soc’ M := 0, soc' M := socM, and soc'M := 7; ' (soc(M/soc'"*M)), where m; : M —
M /soc* M, for i € Z~g. One can see that the following holds

soc' M /soc"™* M = soc(M/soc' ' M),

and it implies that the quotients soc! M/soci~1 M are semisimple. Then the following semisimple
filtration of M is called the socle filtration of M

0=s0® M C soc*M C ...
The quotients are called the socle layers and are denoted as
soct M = soc' M /soc'™* M.

Definition 2.7. The radical of M is the smallest submodule N of M such that the quotient M /N
18 semasimple.

One could also verify that the following is true for the radical of a module M :

radM = m ker®,
O:M—->W

where ® denotes a homomorphism from M to an arbitrary semisimple R-module W. We define
rad®M := M, rad'™*M := rad(rad*M), for i € Z~g. It follows that the quotients rad’ M /rad'™* M
are semisimple and we obtain the following filtration of M:

- Crad’M C rad*M C rad®M = M.

This filtration is called the radical filtration of M, if for some n € Z~o, rad"M = 0. The
quotients of consecutive submodules are called the radical layers and are denoted as

rad+*M := rad'M/rad"™ M.

The following theorem explains the relation between the socle and radical filtrations of a given
module:

Theorem 2.2. Let M be a module over a ring or a Lie algebra R and suppose that one of the
following holds for some n € Z+

e soc"M = M,
e rad"M =0

but neither holds for any smaller n. Then the other equation is also true and the filtrations satisfy
rad” "M C soc* M

for all 0 < i <mn. In other words, if one of the filtrations exhausts M after a finite number of
steps, then both filtrations are finite and have the same length. This length is called the Loewy
length of M.

Proof: Assume soc™ M = M. We apply induction on the length of socle filtration of M. For i = 0,
rad®M = M = soc™ M. Suppose that for some 0 < k < n, rad®*M C soc”~*M. Then,

rad* M = ﬂ ker®d C ﬂ ker®
d:radk M—W P:soc" kM —W
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The map 7 : soc® *M — (soc® ¥ M) /(soc" %=1 M) is a homomorphism with a semisimple module
as its codomain (the socle layers are semisimple). Therefore,

rad*'M C kerm = soc™ 51 M.
Hence, we have proven that rad” M C soc'M for all positive integers 0 < i < n. In particular,
rad®M C soc® M = 0.

Now assume rad™M = 0. We apply induction on the length of the radical filtration of M. It is
obvious that rad®M = 0 = soc’ M. Suppose that rad*M C soc® *M for some positive integer
0 < k < n. Consider the homomorphisms 71 : M/rad*M — M/soc" *M, my : M — M /rad*M
and 7 : M — M/soc® ¥M. Clearly, 1 = m; o 7. By definition,

soc" FHIM = 77 Y(soc(M/soc™ ¥ M)).
On the other hand,
rad*'M C w5 ' (rad* ' M) /(rad* M) = 7y (n7 (soc(M/soc" ¥ M))) = w1 (soc(M/soc™ ¥ M)).
It follows that rad®* 1M C soc”~**+1M, which implies that
rad’M C soc™ ' M

for all positive integers 0 < i < n. Moreover, M = rad®M C soc™ M, therefore M = soc™ M. R
Under the assumption of Theorem 2.2 both the radical and socle filtrations of a module M are
Loewy filtrations. Their length coincide and is called the Loewy length of M. If the radical and
socle filtrations of M coincide, we say that M is a rigid module.

2.2 Tensor representations of gl and sp_

In this section we define the infinite dimensional locally finite Lie algebras gl,, and sp.,, and
introduce their tensor representations.

In order to describe the tensor representations of sp . first we need to understand the tensor
representations of gl . For this reason I am going to review some results from [styrk |.

Let V and Vi be countable dimensional vector spaces and (-,-) : V ® V, — C be a non-degenerate
pairing. The Lie algebra gl is defined as the vector space V ® V, endowed with the Lie bracket
satisfying

[u@u*,vv*] = (v,u")u @ v* — (u, v v u* (2)
for u,v € V and u*,v* € V*. G. Mackey [mackey | has proven that one can find dual bases
{&itics of V and {/ }ics of Vi, where J = Z/{0}, such that we have (§;,{}) = 6; ;. Given such a
basis of V' we can think of gl as the Lie algebra with linear basis {E; ; = & ® £j| i,j € J}. Then
(2) becomes

[Eijs Erg] = 0k i Eiy — 6i1 By j-

We call V' the natural representation of gl , and V, the conatural representation of V.

For integers p,q > 0 the tensor representation V®®9) is defined as V& @ (V,)®9 and is equipped
with a gl -module structure satisfying

(u®u*)(111®'"®Up®v>1k®"'®v;) — Ef:1<vi,u*>v1®'"®Uz‘—1®u®vi+1®"'®Up®vf®"'®vz—

Y vj)r1 @ R, ®0] ®Uj_ ®UT Ui ® @y

for u,v1,...,v, € Vand u*, 07, ... ,v; € Vi.
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The product of symmetric groups &, x &, acts on V@(@9) by permuting the factors, and this
action commutes with the action of gl on V®®9)  For this reason we say that VE@9) is a
(9lso, ©p x G4)-module.
For any pair of indices I = (i,5) such that ¢ € {1,...,p} and j € {1,...,q} we consider a tensor
contraction

;: VP _y yo(p—1la-1)

suchthatv1®~~~®vp®v>f~~®v;‘r—><vi,vj>vl®~~~®ﬁi®~~~®ﬁj*®~~®v;,Wherev} andvA;f

means that these terms are left out.

We define the (gl,, &, x &,) submodule V{r:a} of V&@:9) a5

vira} .— ﬂker(q)] L@ V®(p*1,q*1))7
I

and we set VPO .= V@ and V{04 .= V@4 whenever p =0 or ¢ = 0.

Now we are ready to define the simple finitary Lie algebra sp .

Let V' be a countable dimensional vector space and 2 : V@ V' — C be a non-degenerate anti-
symmetric bilinear form on V. Then the Lie algebra sp_ is defined as the Lie subalgebra of gl
under which the bilinear form (2 is invariant. In other words,

sPo = {9 € alo| Qgu,v) + Qu, gv) =0}

for all u,v € V. Similarly to the case gl_,, based on an observation of Mackey we can pick a basis
{&i}iez g0y of V, such that, Q(&;, ;) = sgn(i)ditjo-

We can also view sp., as the Lie algebra with linear basis {sgn(j)E; ; — sgn(i)E_, _;}, where
E;; ={& ®¢&;li,j € J}. In this case the dual basis is £ = sgn(i)¢;, therefore sp_ = Sym?V.

We call V, considered as an sp.-module by restriction, the natural representation of sp_,. Since
V 2V, as sp_ -modules, the sp__- action on the gl__-module V(P4 coincides with the sp__-action
on the gl -module V®(P+9) For this reason it suffices to study the tensor representations V®<. In
other words, we are going to study the decomposition of V% into a direct sum of indecomposable
submodules. As we will see later, the irreducible subquotients of these indecomposable sp . -modules
are highest weight modules.

Now we consider a tensor contraction for any pair of indices I = (4, j) such that 4,5 € {1,...,d}
(I)(I> : V®d — V®(d_2),

Ul®"‘®Ud'—>Q(Ui,vj)vl®"‘®15i®"'®1fj®"'®vd~

Furthermore, we define V{9 := C and V) := V and

Vid .— m ker(®py : yed V®(d—2))
I

for all positive integers d > 2.

2.3 Young tableaux and Schur functors

Definition 2.8. Given a positive integer d, we define a partition \ of d to be a sequence of
positive integers

A= (A1, A2,..., Ag) such that Ay > Ay > > Ay >0and d=|)| = E’f)\i.

We call k the length of the partition .
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To each partition A = (A1, \a,..., \x) of a positive integer d, one associates a Young diagram
which has k rows and \; boxes in the ¢ th row, the rows being lined up on the left.

Figure 1 Young diagram of the partition (5,4,1)

The conjugate of a partition ) is the partition A7 associated to the Young diagram obtained by
transposition of the Young diagram of A\. The importance of partitions in representation theory is
that they parametrize the irreducible representations of G,.

A Young tableau is a Young diagram in which boxes are filled with the numbers from 1 to |A|.
Given a Young tableau of A, where |A\| = d, we can define two subgroups of the symmetric group

P = Py :={g € &4| g preserves each row},

Q = Q) :={h € &,4| h preserves each column}.

Consider two elements in the group algebra CSy:
ay = Xgepeg, by = Xpegsgn(h) - ep.

If V is a vector space over C, and &, acts on V®? by permuting the factors, the image of
ay : V& - V¥4 is the following subspace of V®¢:

Im(ay) = Sym™MV @ Sym™V @ --- @ Sym™V

Similarly, the image of by is the following subspace of V®¢:

)= N\"veNve o NV

where p is the partition conjugate to A. We define the Young symmetrizer ¢y by setting:
cx = ay - by € CS,.

If we define
H)\ = C[Gd]c,\7

then H) is an irreducible representation of &,4. It can be shown that every irreducible representation
of &, is isomorphic to Hy for some A with |A| = d.
We can also see that ¢y projects V% onto

SAV :=im(cy : V& - VO
which is an irreducible representation of gl,. Here Sy is called the Schur functor corresponding to
a partition A. More on this can be found in [fulton |.
2.4 Highest weight modules

In order to give a concrete construction of tensor representations of sp_,, we need to review some
background material.
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Definition 2.9. Let g be a Lie algebra. Then x € g is said to be semisimple if adx is semisimple
(i.e the adjoint map of x is diagonalizable).

Definition 2.10. A Lie subalgebra of g is said to be toral if it entirely consists of semisimple
elements.

Let M be a g-module, t be a toral subalgebra of g, and t* be its dual. For each a € t* let:
M :={ve Mtv=a(t)v Vt € t}.

The space M® is the space of weight vectors of weight . If M“ # 0, we say that « is a weight of M.
It can be verified that weight vectors for distinct weights in M are linearly independent, therefore
YacrM?* is a direct sum and Xoce- M C M. We call M a t-weight g-module if Xpco M* = M.

In what follows g = gl ., 5P-

Definition 2.11. A splitting Cartan subalgebra by of g is a maximal toral subalgebra such that
g is an h-weight module.

If b is a splitting Cartan algebra, then g is an h-weight module:
g=he P o
acb*/{0}

This decomposition of g is called the root decomposition of g with respect to the Cartan subal-
gebra h. The nonzero spaces g* for oo # 0 are called the root spaces of g and A := {«a € h*/{0} |
g% # 0} is called the set of roots of g*. The decomposition of the set A into two disjoint sets AT
and A~ is called a triangular decomposition of A if and only if o, 3 € A", o + 3 € A implies
a+ B €A, and o € AT implies —a € AT,

Definition 2.12. A Lie subalgebra b of g is called a Borel subalgebra if there is a triangular
decomposition such that b = (P, o+ §%) ¥ b.

Definition 2.13. Let M be a g-module and b C g be a Borel subalgebra. If v € M and v generates
a one-dimensional b-submodule, then we call v a b-singular vector.

It follows that any such vector satisfies (P ,ca+ 8%)v = 0 and for all, z € b, 2v = x(x)v for some
fixed weight x € h*.

Definition 2.14. A module M is called a highest weight module if it is generated by some
b-singular vector v of weight x € h*. The weight x is called the highest weight of M.

It is a straightforward fact that the highest weight vector v of M is determined uniquely up to
scalar multiplication. Moreover, a highest weight module is always a weight module.
When g = gl,, we have the following root decomposition: gl,, = b @ (P,ca CXo), where

ot = EPCEii,  Ag = {ei —¢li,j € J,i # j}, Xfi[_ej =Ei;
icJ

and €; € h* is determined by €,(E; ;) = 0; ;. Here J is a countable set. If we put J = Z/{0}, we
can define the following triangular decomposition

A+={€i—€j|0<i<j}U{€i—6j|i<j<0}U{€i—6j|j<i<0}, A~ =—AT. (3)

Definition 2.15. For any partitions A and p such that |A\| = p and |u| = q, we define the
gl -submodule I'y ,, of virat by setting

Ty, = VP3 (S, Ves, V).



3 RESULTS ABOUT TENSOR REPRESENTATIONS OF & 8

With respect to the Borel subalgebra b determined by (3), I'y ,, is an irreducible highest weight
gl.o-module. It was shown in [styrk | that as an sp_ -module, I'y o is not a highest weight module,
but only an indecomposable module.

Now let us explore sp_, the simple locally finite Lie algebra we are interested in. It has the
following root decomposition:

5pcx) = bsp @ ( @ (CXip)7

AEALy
where
bep = @D (Bii — E_ii),  Asp = {£(ei + )i, j € Zoo} U{(ei — )i, j € Zsg and i # 5}
1€Z>0
X, =Bij+Ej, X _ =E;+E_j; X, =E;+E;_

Here {E; ;} is the basis of gl, and ¢; € b, is defined by the equality €;(E;; — E_j ;) = d; ; for
ivj € Z>0'

In this case we fix the following Borel subalgebra of sp_:

b=( @ 5pg\o)®h5p where Ajp = {(gj+€i)li,j € Zso and i > j}U{(e;—¢;)|i,j € Z>p and i < j}.
xeAad,

For any partition X such that |A\| = d, we define the sp__-submodule I'(,y of Vel ag

F</\> =Vn SaV.

It turns out that I'¢yy is an irreducible highest weight sp . -module. We proceed to find out more
about this and some other known results from [styrk | about the structure of sp .

3 Results about tensor representations of sp_

The following theorem from [styrk | states in particular that I'(yy is an irreducible highest weight
5p.-module.

Theorem 3.1. For any non-negative integer d there is an isomorphism of (sp.,, Sp)-modules

V<d> = @ F</\> ® Hy
IAl=p

For every partition \, the sp.,-module Iy is an irreducible highest weight module with highest
weight w = 3;enAi€;.

The following fact will be very important for the main result of this project:

Lemma 3.2. Any automophism ¢ of the sp,,-module Ty is of the form ¢(v) = cv, where
ce C\ {0}.

Proof:  Since I'(y is a highest weight module, it is generated by some b-singular vector v € ')
which is unique up to a scalar multiplication. Therefore any automorphism ¢ sends v to cv where
c is a nonzero complex number. Since v generates I'(y), ¢ is already determined uniquely by c.
Hence, ¢(v) = cv for every v € T'¢»).1

Next we restate the theorem from [styrk | that describes the socle filtrations of the tensor
representations of sp .
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Theorem 3.3. For any non-negative integer d the gl -module V¥, regarded as an sy, -module,
has Loewy length [%] +1, and

d
soc" V' = ﬂ ker(®1, 1,1, : VI — VeuE), =12, [5}’
I, 0o, I,

where ® 1, 1,1,y = P, 0P, 0 0Py, .

7

This result can be used to obtain the following theorem which describes the socle filtration of each
indecomposable direct summand T'y.

Theorem 3.4. For any partition X, the sp_ -module I"y is indecomposable and

S D SNy =1
|ul=IAI— 27|

The coefficients N;‘ (29)7 8Te called Littlewood-Richardson coefficients and we are going to learn
more about them in the next section.

3.1 Littlewood-Richardson coefficients

The Littlewood-Richardson coefficients are very important when studying the socle filtrations of
indecomposable direct summands of V®2.

The Littlewood-Richardson coefficients IV 3,'7 are non-negative integers which depend on three
partitions A, u, v and are determined by relation

SuSy = EaN; . Sh,

where S, is the Schur symmetric polynomial corresponding to the partition ;. For more details on
this relation see [fulton | pages 455-456.

Let A and p be partitions such that A; > p; for each i. Consider a partition 7 such that |y| = |A|—|ul.
We call the set-theoretic difference of the Young diagrams of A and p a skew diagram of shape A/ p.
A semistandard skew tableau of shape \/u and weight ~ is a skew diagram filled with numbers

that satisfies the following conditions:

e cach positive integer ¢ less than or equal to |y| appears exactly ; times,
e the numbers along each column are strictly increasing,

e the numbers along each row are weakly increasing.
If in addition the following condition holds
e after removal of 1 or more leftmost columns we again obtain a semistandard skew tableau,

we call such a semistandard skew tableau a Littlewood-Richardson tableau.

Theorem 3.5. (Littlewood-Richardson Rule) For partitions A, u,~y, the Littlewood-Richardson
coefficient N:‘ﬁ is equal to the number of Littlewood-Richardson tableaux of shape A/p and of weight

.



4 MAIN RESULTS 10

12 2 2
2/3 13

Figure 2 There are only 2 Littlewood-Richardson tableaux of shape (4,3,2)/(2,1) and of weight

4,3,2
(3,2,1) therefore N((271),()37271) =2

More information on this theorem can be found in [fulton |. The following observation is very
easy to verify and is going to be very helpful later.

If X is a partition of length 1, i.e A = (d) where d € ZT, then Nl’)ﬁ # 0 if and only if v is of length
1iey = (d') for some d € Z* such that d’ < d.

4 Main results

4.1 Non-rigidity of the tensor representations of sp_, and their indecom-
posable direct summands

A first observation is that any tensor representation V®? of sp__ is non-rigid. Indeed, note that
the Loewy length of the indecomposable direct summand of V&% corresponding to the partition
(d) of d is 1. On the other hand, Theorem 3.4 implies that the remaining indecomposable direct
summands are of Loewy length at least 2. Hence, the socle filtration of an arbitrary tensor module
V@4 does not coincide with its radical filtration. The following example illustrates this argument:

T
Vo2 &) ((0)) .
L(2)) [N(EBH))

The socle filtration of V®2 is
0cC SOC(V®2) = F<(2)> D F((l,l)) C V®2,

while
rad(VE?) =T 1))

We are interested in answering the following more challenging question: Are all indecomposable
direct summands of an arbitrary tensor module V®? rigid? We give the answer to this question at
the end of this section. We begin with some preliminaries.

Lemma 4.1. If all layers except the top layer of a socle filtration of a module M are simple, then
M is rigid.

Proof: We apply induction on the length of M. Suppose the length of the socle filtration of M
equals to n, and the length of its top layer equals k > 1. Then radM C soc™'M, moreover
radM = soc™ ' M as otherwise the length of the radical filtration will be at most n — 1, which
contradicts Theorem 2.2. To finish the proof one applies induction to the module radM = soc” ' M,
whose length equals n — k < n and which satisfies the assumption of the lemma.l

For the proof of our main result we need the following auxiliary fact.

Proposition 4.2. Let X be a partition of d and | := [%] Assume that the following conditions
hold for the socle filtration of the sp . -module I'y:

e So¢'TITy is nonzero and simple,
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e the decomposition of 56¢'T'y into simple submodules contains at least one submodule with
multiplicity at least 2.

Then 'y is non-rigid.

Proof: ~ We assume, on the contrary, that I'y is rigid. It follows that the quotient M :=
I'y/soct=(T) is rigid with Loewy length 2. Let us denote the simple top layer of M by Ly By
assumption the socle of M contains some simple submodule with multiplicity n > 2; let us denote
this submodule by I'(y/y. If we take the quotient of M by the complement of nl'(\/y in socM, we
obtain the quotient module

F(}\//>

X~ nl’ %

By assumption X is also rigid. In order to prove that this assumption is wrong, it is sufficient to
show that X is decomposable.

Set Y =T"y,. We claim that there exists an embedding of X intonY :=Y @Y &.---&Y. We can
construct this embeddlng as follows. Observe that socX = soc(nY’) = nI' We start by fixing
an isomorphism ;' : socX — nY. Recall the beautiful argument from [cohen | that the tensor
representations V®¢ of sp__ and their indecomposable direct summands are injective. This fact
allows us to extend j’ to all of X: there exists an injective homomorphism j : X — nY which
induces the isomorphism j' between socX and soc(nY’). Now using this map we construct the
following map of quotients:

i X/socX — nY/soc(nY) = n(Y/soc(Y)).

Furthermore, Theorem 3.4 implies that

v o LR or L
Loy Loy

depending on the parity of d (also see the proof of Theorem 4.3). Thus, Y/soc(Y) is simple. Let
Y/soc(Y) =2 A (A is either T'yy or I'gy).

Represent n(Y/socY) as (A®---@ A). Then by Lemma 3.2 imj  has the form {¢;0@ca®- - - @ v}
where v runs over A and ¢y, ¢y, ..., ¢, are fixed complex numbers. If v is a preimage of v in Y, then
the submodule Y of nY’ generated by clv@cw@ -@® ¢, is isomorphic to Y. Since imj = Y+socY
we see that X 2 imj is decomposable as Y & (socY')’ where (socY)' is a complement to ¥ N soc(nY)
in socY. The propostion is proved.ll

Now we are ready to answer the main question of our research project.

Theorem 4.3. For d > 6, the tensor module V®? contains at least one non-rigid indecomposable
direct summand.

Proof: To prove this theorem, it is sufficient to give an explicit example of a non-rigid indecomposable
direct summand that occurs in decomposition of V®? for every d > 6. Consider the partition
A=1(2,2,1,...,1) of d for every d > 6. Our claim is that I'y satisfies the conditions of Proposition
4.2, hence Ty is non-rigid. We will see below by explicit computation that the top layer of the socle
filtration of I'y is always simple.

By theorem 3.4 the Loewy length I of V&9 is [4]| + 1]. We will consider seperately the cases when
d is odd and when d is even.

Case 1 Let d=2k+1>7. Thenl =k + 1 and

soc" T, = @ (XCjy =, (Q"Y)T)FW> = Ehi=rN, 9y Tea-
ll=I =127

The second equality holds since |u| = |A] — |2v] = 1.
Next, we observe that the only Littlewood-Richardson tableaux of shape (2,2,1,...,1)/(1) are
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The tableau on the left has weight (2,2,1,...,1) with |(2,2,1,...,1)| = 2k > 6. The partition
v = (k — 1,1) satisfies the conditions (27)T = (2,2,1,...,1), |y| = k. However, for the tableau on
the right there is no partition ~ satisfying (2v)T = (2,1,...,1), |y| = k as the number of boxes in
the first column of the Young diagram corresponding to the partition (2,1,...,1) is odd (being
equal to 2k — 1).
A (2,2,1,.,1)
Therefore, Xy =Nj) (2)r = N1y 221, 1) 20
500" Ty 2 (BN 27Tt
_ n(221,0) _
= N(l),(2,2,1...,1)F<(1)) =Ty

This shows that the top layer of the socle filtration of I'y is a simple module.
We now show that the second top layer of I'y contains a submodule with multiplicity n > 2.
According to Theorem 3.4,

Wklﬁ = @ (Z|’Y|:k—1N;i\,(2’y)T)F<H>‘
lal=IA=127

It follows that |u| = |A| — |27] = 3. Therefore,
500 T = (B =-1N(5,1) 0y )T (2.1 © Bt NG 1,100,271,
Consider the partition p = (1, 1,1). Explicit computations show that
Btk N 1,07 = 2

Indeed, there are two Littlewood-Richardson tableaux of shape (2,2,1,...,1)/(1,1,1)

1 1
2 2

(here we use that d > 5). The tableau on the left has weight (1,1,...,1) = (2y)T for v = (k — 1).
For the right tableau the corresponding partition is v = (k — 2, 1).

)

Therefore, in case d is odd, Proposition 4.2 applies to I'(251,... 1) and shows that ['x 21, . 1) is
non-rigid.
Case 2 If d = 2k > 6, then [ = k + 1. From Theorem 3.4 we obtain

—=k+1 ~ A
502 D S @) -
ul=IN 1231
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Then we have |u| = [A\| — |27y] = 0, which makes this case easier. Therefore, the top layer of the
socle filtration of '3 21,...,1) 18 I'(0))- In order to prove that the layer second from the top contains
a submodule with multiplicity n > 2, we observe that

5o T2 D (Sj=m1 N o))
lul=IA1- 27|
implies |u| = |A| — [(27)T| = 2. Hence
50C"Tx 2 (D) =1 V() 297 )T (@) B (Byi=e-1 N 1,297 )T (1,

Consider the partition (1,1). There are two Littlewood-Richardson tableaux of shape (2,2,1,...,1)/(1,1)
whose weights « satisfy |(27)7| = 2k — 2

SSR

(here we use that 2k — 4 > 2). Therefore, EM:k,lNé 1,297 = 2, which implies that, for even d,
['((2,2,1,...,1)) s also non-rigid by Proposition 4.2.

Since I'((2,2,1,...,1)) is non-rigid for d > 6, we have proven that for any d > 6 the tensor representation
V@4 of sp_ contains at least one non-rigid indecomposable direct summand. B

5 Conclusion and open questions

We have proven that all tensor representations V% of the simple finitary Lie algebra sp__ contain
at least one non-rigid indecomposable direct summand for d > 6. Corollary 6.11 from [cohen |
states that the category of tensor representations of sp_, is equivalent to the category of tensor
representations of s0.,. Therefore, our results also apply to the tensor represenations of s0.

Along with Phillip Weiss’ bachelor thesis, "Non-rigidity of tensor representations of gl_ " we
have answered the question whether all indecomposable injective tensor modules are rigid for the
simple finitary Lie algebras s, sp., and so0.,. However, we have not shown how many non-rigid
indecomposable direct summands are contained in the decomposition of V®? for sp_ . This is
closely related to the general problem of computing the radical filtrations of the indecomposable
direct summands of the sp_ -modules V®? for d > 6, which could be an interesting avenue for
further research.

6 Appendix

In this appendix one can find the results of our computations. The diagrams below represent
the socle filtrations of indecomposable direct summands of V®? for d < 10. More precisely, each
tower in these diagrams represents an indecomposable direct summand of the corresponding tensor
representation V®?. The rows represent the socle layers of the indecomposable submodule, with the
bottom row representing the socle itself. The computations were performed using a pre-implemented
code in MatLab. The link [url | to the code developer’s website can be found in the references.
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