

Almost Commuting Self-Adjoint Operators and Iterated Commutator Estimates

Jakob Geisler, June 19, 2025

Problem 1: Let A, B be two hermitian (or normal, unitary, complex, resp.) $N \times N$ matrices with $||A||_{op}$, $||B||_{op} \leq 1$ and $||[A, B]||_{op} = ||AB - BA||_{op} \leq \varepsilon \ll 1$. Are there two hermitian (or normal,

 $||[A,B]||_{op} = ||AB - BA||_{op} \le \varepsilon \ll 1$. Are there two hermitian (or normal unitary, complex, resp.) matrices A', B' with [A', B'] = 0 and

$$||A - A'||_{op} + ||B - B'||_{op} \le f(\varepsilon),$$
 (1)

where $\lim_{\varepsilon \to 0} f(\varepsilon) = 0$?

- How fast does f converge to 0 for $\varepsilon \to 0$?
- Does fidenend on All
- What about other norms? Hilbert-Schmidt/Frobenius. LP-norms?

Problem 1: Let A, B be two hermitian (or normal, unitary, complex, resp.) $N \times N$ matrices with $||A||_{op}$, $||B||_{op} \leq 1$ and $||[A, B]||_{op} = ||AB - BA||_{op} \leq \varepsilon \ll 1$. Are there two hermitian (or normal, unitary, complex, resp.) matrices A', B' with [A', B'] = 0 and

$$||A - A'||_{op} + ||B - B'||_{op} \le f(\varepsilon),$$
 (1)

where $\lim_{\varepsilon \to 0} f(\varepsilon) = 0$?

- How fast does f converge to 0 for $\varepsilon \to 0$?
- Does f depend on N?
- What about other norms? Hilbert-Schmidt/Frobenius LP-norms?

Problem 1: Let A, B be two hermitian (or normal, unitary, complex, resp.) $N \times N$ matrices with $||A||_{op}$, $||B||_{op} \leq 1$ and $||[A, B]||_{op} = ||AB - BA||_{op} \leq \varepsilon \ll 1$. Are there two hermitian (or normal, unitary, complex, resp.) matrices A', B' with [A', B'] = 0 and

$$||A - A'||_{op} + ||B - B'||_{op} \le f(\varepsilon),$$
 (1)

where $\lim_{\varepsilon \to 0} f(\varepsilon) = 0$?

- How fast does f converge to 0 for $\varepsilon \to 0$?
- Does f depend on N?
- What about other norms? Hilbert-Schmidt/Frobenius, L^p -norms?

Problem 1: Let A, B be two hermitian (or normal, unitary, complex, resp.) $N \times N$ matrices with $||A||_{op}$, $||B||_{op} \leq 1$ and $||[A, B]||_{op} = ||AB - BA||_{op} \leq \varepsilon \ll 1$. Are there two hermitian (or normal, unitary, complex, resp.) matrices A', B' with [A', B'] = 0 and

$$||A - A'||_{op} + ||B - B'||_{op} \le f(\varepsilon), \tag{1}$$

where $\lim_{\varepsilon \to 0} f(\varepsilon) = 0$?

- How fast does f converge to 0 for $\varepsilon \to 0$?
- Does *f* depend on *N*?
- What about other norms? Hilbert-Schmidt/Frobenius, L^p -norms?

Problem 1: Let A, B be two hermitian (or normal, unitary, complex, resp.) $N \times N$ matrices with $||A||_{op}$, $||B||_{op} \leq 1$ and $||[A, B]||_{op} = ||AB - BA||_{op} \leq \varepsilon \ll 1$. Are there two hermitian (or normal, unitary, complex, resp.) matrices A', B' with [A', B'] = 0 and

$$||A - A'||_{op} + ||B - B'||_{op} \le f(\varepsilon), \tag{1}$$

where $\lim_{\varepsilon \to 0} f(\varepsilon) = 0$?

- How fast does f converge to 0 for $\varepsilon \to 0$?
- Does *f* depend on *N*?
- What about other norms? Hilbert-Schmidt/Frobenius, L^p -norms?

- First formulated by John v. Neumann, 1929.
- Communicated as 'Open Problem' by P. Rosenthal, '69, and P.R. Halmos '70.
- Affirmative Answers if *f* is **allowed to depend on** *N*:
 - W. Luxemburg and R. Taylor, '70 (complex matrices): For every $N \in \mathbb{N}$, there is a function $f_N(\varepsilon)$.
 - J. Bastian and K. Harrison, '74 (normal operators)
 - = C. Pearcy and A. Shields, '79 (A self-adjoint, B complex): $f_{\rm W}(\varepsilon) = \sqrt{\frac{W_{\rm p} V^{\rm p}}{2}}$
- Negative Answers for f independent of N:
 - = D. Voiculescu, 81' (triplets of hermitian matrices) and 83' (unitary operators). = K. R. Davidson, 85', A hermitian, B normal, A' hermitian, B' arbitrary.

- First formulated by John v. Neumann, 1929.
- Communicated as 'Open Problem' by P. Rosenthal, '69, and P.R. Halmos '70.
- Affirmative Answers if *f* is **allowed to depend on** *N*:
 - = W. Luxemburg and R. Taylor, '70 (complex matrices): For every $N \in \mathbb{N}$, there is a function $f_N(\varepsilon)$.
 - J. Bastian and K. Harrison, '74 (normal operators)
- Negative Answers for f independent of N:
 - \sim D. Voiculescu, 81' (triplets of hermitian matrices) and 83' (unitary operators)

- First formulated by John v. Neumann, 1929.
- Communicated as 'Open Problem' by P. Rosenthal, '69, and P.R. Halmos '70.
- Affirmative Answers if *f* is **allowed to depend on** *N*:
 - W. Luxemburg and R. Taylor, '70 (complex matrices): For every $N \in \mathbb{N}$, there is a function $f_N(\varepsilon)$.
 - J. Bastian and K. Harrison, '74 (normal operators).
 - C. Pearcy and A. Shields, '79 (A self-adjoint, B complex): $f_N(\varepsilon) = \sqrt{\frac{(N-1)\varepsilon}{2}}$.
- Negative Answers for f independent of N:

- First formulated by John v. Neumann, 1929.
- Communicated as 'Open Problem' by P. Rosenthal, '69, and P.R. Halmos '70.
- Affirmative Answers if *f* is **allowed to depend on** *N*:
 - W. Luxemburg and R. Taylor, '70 (complex matrices): For every $N \in \mathbb{N}$, there is a function $f_N(\varepsilon)$.
 - J. Bastian and K. Harrison, '74 (normal operators).
 - C. Pearcy and A. Shields, '79 (A self-adjoint, B complex): $f_N(\varepsilon) = \sqrt{\frac{(N-1)\varepsilon}{2}}$.
- Negative Answers for *f* independent of *N*:
 - D. Voiculescu, 81' (triplets of hermitian matrices) and 83' (unitary operators)
 - st K. K. Davidson, 85': A hermitian, eta normal, A' hermitian, B' arbitrary.

- First formulated by John v. Neumann, 1929.
- Communicated as 'Open Problem' by P. Rosenthal, '69, and P.R. Halmos '70.
- Affirmative Answers if *f* is **allowed to depend on** *N*:
 - W. Luxemburg and R. Taylor, '70 (complex matrices): For every $N \in \mathbb{N}$, there is a function $f_N(\varepsilon)$.
 - J. Bastian and K. Harrison, '74 (normal operators).
 - C. Pearcy and A. Shields, '79 (A self-adjoint, B complex): $f_N(\varepsilon) = \sqrt{\frac{(N-1)\varepsilon}{2}}$.
- Negative Answers for *f* independent of *N*:
 - D. Voiculescu, 81' (triplets of hermitian matrices) and 83' (unitary operators)
 - ullet K. R. Davidson, 85': A hermitian, B normal, A' hermitian, B' arbitrary

- First formulated by John v. Neumann, 1929.
- Communicated as 'Open Problem' by P. Rosenthal, '69, and P.R. Halmos '70.
- Affirmative Answers if *f* is **allowed to depend on** *N*:
 - W. Luxemburg and R. Taylor, '70 (complex matrices): For every $N \in \mathbb{N}$, there is a function $f_N(\varepsilon)$.
 - J. Bastian and K. Harrison, '74 (normal operators).
 - C. Pearcy and A. Shields, '79 (A self-adjoint, B complex): $f_N(\varepsilon) = \sqrt{\frac{(N-1)\varepsilon}{2}}$.
- Negative Answers for *f* independent of *N*:
 - D. Voiculescu, 81' (triplets of hermitian matrices) and 83' (unitary operators).
 - K. R. Davidson, 85': A hermitian, B normal, A' hermitian, B' arbitrary.

- First formulated by John v. Neumann, 1929.
- Communicated as 'Open Problem' by P. Rosenthal, '69, and P.R. Halmos '70.
- Affirmative Answers if *f* is **allowed to depend on** *N*:
 - W. Luxemburg and R. Taylor, '70 (complex matrices): For every $N \in \mathbb{N}$, there is a function $f_N(\varepsilon)$.
 - J. Bastian and K. Harrison, '74 (normal operators).
 - C. Pearcy and A. Shields, '79 (A self-adjoint, B complex): $f_N(\varepsilon) = \sqrt{\frac{(N-1)\varepsilon}{2}}$.
- Negative Answers for *f* independent of *N*:
 - D. Voiculescu, 81' (triplets of hermitian matrices) and 83' (unitary operators).
 - K. R. Davidson, 85': A hermitian, B normal, A' hermitian, B' arbitrary.

- H. Lin, '95: first *N*-independent result for hermitian matrices.
- P. Friis and M. Rørdam, '96: shorter proof and generalization to certain classes of C^* -Algebras.
- M. B. Hastings, '09: $f(\varepsilon) \le \varepsilon^{1/5} \cdot E(1/\varepsilon)$.
- N. Filonov and I. Kachkovskiy, '10, and L. Glebsky, '10: Analogue for normalized Hilbert-Schmidt-norm $||A||^2 = \frac{1}{N} Tr(A^*A)$.

- H. Lin, '95: first *N*-independent result for hermitian matrices.
- P. Friis and M. Rørdam, '96: shorter proof and generalization to certain classes of C^* -Algebras.
- M. B. Hastings, '09: $f(\varepsilon) \le \varepsilon^{1/5} \cdot E(1/\varepsilon)$.
- N. Filonov and I. Kachkovskiy, '10, and L. Glebsky, '10: Analogue for normalized Hilbert-Schmidt-norm $||A||^2 = \frac{1}{N} \text{Tr}(A^*A)$.

- H. Lin, '95: first *N*-independent result for hermitian matrices.
- P. Friis and M. Rørdam, '96: shorter proof and generalization to certain classes of C^* -Algebras.
- M. B. Hastings, '09: $f(\varepsilon) \le \varepsilon^{1/5} \cdot E(1/\varepsilon)$.
- N. Filonov and I. Kachkovskiy, '10, and L. Glebsky, '10: Analogue for normalized Hilbert-Schmidt-norm $||A||^2 = \frac{1}{N} Tr(A^*A)$.

- H. Lin, '95: first *N*-independent result for hermitian matrices.
- P. Friis and M. Rørdam, '96: shorter proof and generalization to certain classes of C^* -Algebras.
- M. B. Hastings, '09: $f(\varepsilon) \le \varepsilon^{1/5} \cdot E(1/\varepsilon)$.
- N. Filonov and I. Kachkovskiy, '10, and L. Glebsky, '10: Analogue for normalized Hilbert-Schmidt-norm $||A||^2 = \frac{1}{N} Tr(A^*A)$.

- H. Lin, '95: first *N*-independent result for hermitian matrices.
- P. Friis and M. Rørdam, '96: shorter proof and generalization to certain classes of C^* -Algebras.
- M. B. Hastings, '09: $f(\varepsilon) \le \varepsilon^{1/5} \cdot E(1/\varepsilon)$.
- N. Filonov and I. Kachkovskiy, '10, and L. Glebsky, '10: Analogue for normalized Hilbert-Schmidt-norm $||A||^2 = \frac{1}{N} Tr(A^*A)$.

- G. A. Elliott, G. Gong, H. Lin, and C. Pasnicu. Abelian C^* -subalgebras of C^* -algebras of real rank zero and inductive limit C^* -algebras. Duke Math. J., 85:511–554, 1996.
- H. Lin. Classification of simple C*-algebras and higher dimensional noncommutative tori. Ann. of Math., 157:521–544, 2003.
- M. B. Hastings. Topology and phases in fermionic systems. J. Stat. Mech., 2008:L01001, 2008.
- M. B. Hastings and T. A. Loring. Almost commuting matrices, localized Wannier functions, and the quantum Hall effect. J. Math. Phys., 51:015214, 2010.
- M. B. Hastings and T. A. Loring. Topological insulators and C^* -algebras: Theory and numerical practice. Annals of Physics, 326:1699–1759, 2011.
- Y. Ogata. Approximating macroscopic observables in quantum spin systems with commuting matrices. Journal of Functional Analysis, 264:2005–2033, 2013.

- G. A. Elliott, G. Gong, H. Lin, and C. Pasnicu. Abelian C^* -subalgebras of C^* -algebras of real rank zero and inductive limit C^* -algebras. Duke Math. J., 85:511–554, 1996.
- H. Lin. Classification of simple C^* -algebras and higher dimensional noncommutative tori. Ann. of Math., 157:521–544, 2003.
- M. B. Hastings. Topology and phases in fermionic systems. J. Stat. Mech., 2008:L01001, 2008.
- M. B. Hastings and T. A. Loring. Almost commuting matrices, localized Wannier functions, and the quantum Hall effect. J. Math. Phys., 51:015214, 2010.
- M. B. Hastings and T. A. Loring. Topological insulators and C^* -algebras: Theory and numerical practice. Annals of Physics, 326:1699–1759, 2011.
- Y. Ogata. Approximating macroscopic observables in quantum spin systems with commuting matrices. Journal of Functional Analysis, 264:2005–2033, 2013.

- G. A. Elliott, G. Gong, H. Lin, and C. Pasnicu. Abelian C^* -subalgebras of C^* -algebras of real rank zero and inductive limit C^* -algebras. Duke Math. J., 85:511–554, 1996.
- H. Lin. Classification of simple C^* -algebras and higher dimensional noncommutative tori. Ann. of Math., 157:521–544, 2003.
- M. B. Hastings. Topology and phases in fermionic systems. J. Stat. Mech., 2008:L01001, 2008.
- M. B. Hastings and T. A. Loring. Almost commuting matrices, localized Wannier functions, and the quantum Hall effect. J. Math. Phys., 51:015214, 2010.
- M. B. Hastings and T. A. Loring. Topological insulators and C^* -algebras: Theory and numerical practice. Annals of Physics, 326:1699–1759, 2011.
- Y. Ogata. Approximating macroscopic observables in quantum spin systems with commuting matrices. Journal of Functional Analysis, 264:2005–2033, 2013.

- G. A. Elliott, G. Gong, H. Lin, and C. Pasnicu. Abelian C^* -subalgebras of C^* -algebras of real rank zero and inductive limit C^* -algebras. Duke Math. J., 85:511–554, 1996.
- H. Lin. Classification of simple C^* -algebras and higher dimensional noncommutative tori. Ann. of Math., 157:521–544, 2003.
- M. B. Hastings. Topology and phases in fermionic systems. J. Stat. Mech., 2008:L01001, 2008.
- M. B. Hastings and T. A. Loring. Almost commuting matrices, localized Wannier functions, and the quantum Hall effect. J. Math. Phys., 51:015214, 2010.
- M. B. Hastings and T. A. Loring. Topological insulators and C^* -algebras: Theory and numerical practice. Annals of Physics, 326:1699–1759, 2011.
- Y. Ogata. Approximating macroscopic observables in quantum spin systems with commuting matrices. Journal of Functional Analysis, 264:2005–2033, 2013.

- G. A. Elliott, G. Gong, H. Lin, and C. Pasnicu. Abelian C^* -subalgebras of C^* -algebras of real rank zero and inductive limit C^* -algebras. Duke Math. J., 85:511–554, 1996.
- H. Lin. Classification of simple C^* -algebras and higher dimensional noncommutative tori. Ann. of Math., 157:521–544, 2003.
- M. B. Hastings. Topology and phases in fermionic systems. J. Stat. Mech., 2008:L01001, 2008.
- M. B. Hastings and T. A. Loring. Almost commuting matrices, localized Wannier functions, and the quantum Hall effect. J. Math. Phys., 51:015214, 2010.
- M. B. Hastings and T. A. Loring. Topological insulators and C^* -algebras: Theory and numerical practice. Annals of Physics, 326:1699–1759, 2011.
- Y. Ogata. Approximating macroscopic observables in quantum spin systems with commuting matrices. Journal of Functional Analysis, 264:2005–2033, 2013.

- G. A. Elliott, G. Gong, H. Lin, and C. Pasnicu. Abelian C^* -subalgebras of C^* -algebras of real rank zero and inductive limit C^* -algebras. Duke Math. J., 85:511–554, 1996.
- H. Lin. Classification of simple C^* -algebras and higher dimensional noncommutative tori. Ann. of Math., 157:521–544, 2003.
- M. B. Hastings. Topology and phases in fermionic systems. J. Stat. Mech., 2008:L01001, 2008.
- M. B. Hastings and T. A. Loring. Almost commuting matrices, localized Wannier functions, and the quantum Hall effect. J. Math. Phys., 51:015214, 2010.
- M. B. Hastings and T. A. Loring. Topological insulators and C^* -algebras: Theory and numerical practice. Annals of Physics, 326:1699–1759, 2011.
- Y. Ogata. Approximating macroscopic observables in quantum spin systems with commuting matrices. Journal of Functional Analysis, 264:2005–2033, 2013.

Content

- Almost Commuting Self-Adjoint Operators
 - When do matrices almost commute?
 - Diagonalyzing Flows

Iterated Commutator Estimates

- Let $P=P^*=P^2$, $Q=Q^*=Q^2\in\mathbb{C}^{N\times N}$ be orthogonal projections.
- Lemma: If $||[P, Q]||_{\mathcal{L}^2} \le ||[P, Q]||_{op} \le \varepsilon \ll 1$ then
- (a) $||PQ||_{op} \ge 1 2\varepsilon$ (almost parallel vectors $x \in \text{Ran}(P)$, $y \in \text{Ran}(Q)$ exist) or
- (b) $||PQ||_{op} \leq 2\varepsilon$ (almost orthogonal subspaces)
- Construction of almost the same ONB of eigenvectors of P and Q:
 - 1. If $||PQ||_{op} \ge 1 2\varepsilon$ then choose normalized $x \in \text{Ran}(P)$, $y \in \text{Ran}(Q)$ such that $||PQ||_{op} = \langle x|y \rangle$.
 - 2. Set $P' = P |x\rangle \langle x|$, $Q' = Q |y\rangle \langle y|$
 - 3. Observe $||[P', Q']||_{\mathcal{L}^2} \leq ||[P, Q]||_{\mathcal{L}^2}$.
 - 4. Repeat. \Rightarrow Get two 'almost parallel ONB's' of eigenvectors of P and Q. \Rightarrow There is an $R = R^* = R^2$ with [R, Q] = 0 and $||R P||_{\mathcal{L}^2} \le 2\varepsilon$.
- Now let $0 < \lambda, \mu \le 1, A = \lambda \cdot P, B = \mu \cdot Q$ and $||[A, B]||_{\mathcal{L}^2} = \lambda \mu ||[P, Q]||_{\mathcal{L}^2} \le \varepsilon$.
- \Rightarrow A and B almost commute if they have almost the same eigenvectors or if their eigenvalues are almost degenerate.

- Let $P = P^* = P^2$, $Q = Q^* = Q^2 \in \mathbb{C}^{N \times N}$ be orthogonal projections.
- Lemma: If $||[P, Q]||_{\mathcal{L}^2} \leq ||[P, Q]||_{op} \leq \varepsilon \ll 1$ then
- (a) $||PQ||_{op} \ge 1 2\varepsilon$ (almost parallel vectors $x \in \text{Ran}(P)$, $y \in \text{Ran}(Q)$ exist) or
- (b) $||PQ||_{op} \le 2\varepsilon$ (almost orthogonal subspaces)
- \blacksquare Construction of almost the same ONB of eigenvectors of P and Q:
 - 1. If $||PQ||_{op} \ge 1 2\varepsilon$ then choose normalized $x \in \text{Ran}(P)$, $y \in \text{Ran}(Q)$ such that $||PQ||_{op} = \langle x|y \rangle$.
 - 2. Set $P' = P |x\rangle \langle x|$, $Q' = Q |y\rangle \langle y|$
 - 3. Observe $||[P', Q']||_{\mathcal{L}^2} \leq ||[P, Q]||_{\mathcal{L}^2}$.
 - 4. Repeat. \Rightarrow Get two 'almost parallel ONB's' of eigenvectors of P and Q. \Rightarrow There is an $R = R^* = R^2$ with [R, Q] = 0 and $||R P||_{\mathcal{L}^2} \le 2\varepsilon$.
- Now let $0 < \lambda, \mu \le 1, A = \lambda \cdot P, B = \mu \cdot Q$ and $\|[A, B]\|_{\mathcal{L}^2} = \lambda \mu \|[P, Q]\|_{\mathcal{L}^2} \le \varepsilon$.
- \Rightarrow A and B almost commute if they have almost the same eigenvectors or if their eigenvalues are almost degenerate.

- Let $P = P^* = P^2$, $Q = Q^* = Q^2 \in \mathbb{C}^{N \times N}$ be orthogonal projections.
- Lemma: If $||[P,Q]||_{\mathcal{L}^2} \le ||[P,Q]||_{op} \le \varepsilon \ll 1$ then
- (a) $||PQ||_{op} \ge 1 2\varepsilon$ (almost parallel vectors $x \in \text{Ran}(P)$, $y \in \text{Ran}(Q)$ exist) or (b) $||PQ||_{op} \le 2\varepsilon$ (almost orthogonal subspaces).
- Construction of almost the same ONB of eigenvectors of P and Q:
 - 1. If $||PQ||_{op} \ge 1 2\varepsilon$ then choose normalized $x \in \text{Ran}(P)$, $y \in \text{Ran}(Q)$ such that $||PQ||_{op} = \langle x|y \rangle$.
 - 2. Set $P' = P |x\rangle \langle x|$, $Q' = Q |y\rangle \langle y|$
 - 3. Observe $||[P', Q']||_{\mathcal{L}^2} \leq ||[P, Q]||_{\mathcal{L}^2}$.
 - 4. Repeat. \Rightarrow Get two 'almost parallel ONB's' of eigenvectors of P and Q. \Rightarrow There is an $R = R^* = R^2$ with [R, Q] = 0 and $||R P||_{\mathcal{L}^2} \le 2\varepsilon$.
- Now let $0 < \lambda, \mu \le 1, A = \lambda \cdot P, B = \mu \cdot Q$ and $\|[A, B]\|_{\mathcal{L}^2} = \lambda \mu \|[P, Q]\|_{\mathcal{L}^2} \le \varepsilon$.
- \Rightarrow A and B almost commute if they have almost the same eigenvectors or if their eigenvalues are almost degenerate.

- Let $P = P^* = P^2$, $Q = Q^* = Q^2 \in \mathbb{C}^{N \times N}$ be orthogonal projections.
- Lemma: If $||[P,Q]||_{\mathcal{L}^2} \leq ||[P,Q]||_{op} \leq \varepsilon \ll 1$ then
- (a) $||PQ||_{op} \ge 1 2\varepsilon$ (almost parallel vectors $x \in \text{Ran}(P)$, $y \in \text{Ran}(Q)$ exist) or
- (b) $||PQ||_{op} \leq 2\varepsilon$ (almost orthogonal subspaces).
- Construction of almost the same ONB of eigenvectors of P and Q:
 - 1. If $||PQ||_{op} \ge 1 2\varepsilon$ then choose normalized $x \in \text{Ran}(P)$, $y \in \text{Ran}(Q)$ such that $||PQ||_{op} = \langle x|y \rangle$.
 - 2. Set $P' = P |x\rangle \langle x|$, $Q' = Q |y\rangle \langle y|$
 - 3. Observe $||[P', Q']||_{\mathcal{L}^2} \le ||[P, Q]||_{\mathcal{L}^2}$
 - 4. Repeat. \Rightarrow Get two 'almost parallel ONB's' of eigenvectors of P and Q. \Rightarrow There is an $R = R^* = R^2$ with [R, Q] = 0 and $||R P||_{\mathcal{L}^2} \le 2\varepsilon$.
- Now let $0 < \lambda, \mu \le 1, A = \lambda \cdot P, B = \mu \cdot Q$ and $\|[A, B]\|_{\mathcal{L}^2} = \lambda \mu \|[P, Q]\|_{\mathcal{L}^2} \le \varepsilon$.
- \Rightarrow A and B almost commute if they have almost the same eigenvectors or if their eigenvalues are almost degenerate.

- Let $P = P^* = P^2$, $Q = Q^* = Q^2 \in \mathbb{C}^{N \times N}$ be orthogonal projections.
- Lemma: If $||[P, Q]||_{\mathcal{L}^2} \leq ||[P, Q]||_{op} \leq \varepsilon \ll 1$ then
- (a) $||PQ||_{op} \ge 1 2\varepsilon$ (almost parallel vectors $x \in \text{Ran}(P)$, $y \in \text{Ran}(Q)$ exist) or
- (b) $||PQ||_{op} \leq 2\varepsilon$ (almost orthogonal subspaces).
- Construction of almost the same ONB of eigenvectors of P and Q:
 - 1. If $||PQ||_{op} \ge 1 2\varepsilon$ then choose normalized $x \in \text{Ran}(P)$, $y \in \text{Ran}(Q)$ such that $||PQ||_{op} = \langle x|y \rangle$.
 - 2. Set $P' = P |x\rangle \langle x|$, $Q' = Q |y\rangle \langle y|$
 - 3. Observe $||[P', Q']||_{\mathcal{L}^2} \leq ||[P, Q]||_{\mathcal{L}^2}$
 - 4. Repeat. \Rightarrow Get two 'almost parallel ONB's' of eigenvectors of P and Q. \Rightarrow There is an $R = R^* = R^2$ with [R, Q] = 0 and $||R P||_{\mathcal{L}^2} \le 2\varepsilon$.
- Now let $0 < \lambda, \mu \le 1, A = \lambda \cdot P, B = \mu \cdot Q$ and $\|[A, B]\|_{\mathcal{L}^2} = \lambda \mu \|[P, Q]\|_{\mathcal{L}^2} \le \varepsilon$.
- \Rightarrow A and B almost commute if they have almost the same eigenvectors or if their eigenvalues are almost degenerate.

- Let $P = P^* = P^2$, $Q = Q^* = Q^2 \in \mathbb{C}^{N \times N}$ be orthogonal projections.
- Lemma: If $||[P, Q]||_{\mathcal{L}^2} \le ||[P, Q]||_{op} \le \varepsilon \ll 1$ then
- (a) $||PQ||_{op} \ge 1 2\varepsilon$ (almost parallel vectors $x \in \text{Ran}(P)$, $y \in \text{Ran}(Q)$ exist) or
- (b) $||PQ||_{op} \leq 2\varepsilon$ (almost orthogonal subspaces).
- Construction of almost the same ONB of eigenvectors of P and Q:
 - 1. If $||PQ||_{op} \ge 1 2\varepsilon$ then choose normalized $x \in \text{Ran}(P)$, $y \in \text{Ran}(Q)$ such that $||PQ||_{op} = \langle x|y\rangle$.
 - 2. Set $P' = P |x\rangle \langle x|$, $Q' = Q |y\rangle \langle y|$
 - 3. Observe $||[P', Q']||_{\mathcal{L}^2} \le ||[P, Q]||_{\mathcal{L}^2}$
 - 4. Repeat. \Rightarrow Get two 'almost parallel ONB's' of eigenvectors of P and Q. \Rightarrow There is an $R = R^* = R^2$ with [R, Q] = 0 and $||R P||_{\mathcal{L}^2} \le 2\varepsilon$.
- Now let $0 < \lambda, \mu \le 1, A = \lambda \cdot P, B = \mu \cdot Q$ and $\|[A, B]\|_{\mathcal{L}^2} = \lambda \mu \|[P, Q]\|_{\mathcal{L}^2} \le \varepsilon$.
- \Rightarrow A and B almost commute if they have almost the same eigenvectors or if their eigenvalues are almost degenerate.

- Let $P = P^* = P^2$, $Q = Q^* = Q^2 \in \mathbb{C}^{N \times N}$ be orthogonal projections.
- Lemma: If $||[P, Q]||_{\mathcal{L}^2} \leq ||[P, Q]||_{op} \leq \varepsilon \ll 1$ then
- (a) $||PQ||_{op} \ge 1 2\varepsilon$ (almost parallel vectors $x \in \text{Ran}(P)$, $y \in \text{Ran}(Q)$ exist) or
- (b) $||PQ||_{op} \leq 2\varepsilon$ (almost orthogonal subspaces).
- Construction of almost the same ONB of eigenvectors of P and Q:
 - 1. If $||PQ||_{op} \ge 1 2\varepsilon$ then choose normalized $x \in \text{Ran}(P)$, $y \in \text{Ran}(Q)$ such that $||PQ||_{op} = \langle x|y\rangle$.
 - 2. Set $P' = P |x\rangle \langle x|$, $Q' = Q |y\rangle \langle y|$.
 - 3. Observe $||[P', Q']||_{\mathcal{L}^2} \le ||[P, Q]||_{\mathcal{L}^2}$.
 - 4. Repeat. \Rightarrow Get two 'almost parallel ONB's' of eigenvectors of P and Q. \Rightarrow There is an $R = R^* = R^2$ with [R, Q] = 0 and $||R P||_{\mathcal{L}^2} \le 2\varepsilon$.
- Now let $0 < \lambda, \mu \le 1, A = \lambda \cdot P, B = \mu \cdot Q$ and $\|[A, B]\|_{\mathcal{L}^2} = \lambda \mu \|[P, Q]\|_{\mathcal{L}^2} \le \varepsilon$.
- \Rightarrow A and B almost commute if they have almost the same eigenvectors or if their eigenvalues are almost degenerate.

- Let $P = P^* = P^2$, $Q = Q^* = Q^2 \in \mathbb{C}^{N \times N}$ be orthogonal projections.
- Lemma: If $||[P, Q]||_{\mathcal{L}^2} \le ||[P, Q]||_{op} \le \varepsilon \ll 1$ then
- (a) $||PQ||_{op} \ge 1 2\varepsilon$ (almost parallel vectors $x \in \text{Ran}(P)$, $y \in \text{Ran}(Q)$ exist) or
- (b) $||PQ||_{op} \leq 2\varepsilon$ (almost orthogonal subspaces).
- Construction of almost the same ONB of eigenvectors of P and Q:
 - 1. If $||PQ||_{op} \ge 1 2\varepsilon$ then choose normalized $x \in \text{Ran}(P)$, $y \in \text{Ran}(Q)$ such that $||PQ||_{op} = \langle x|y \rangle$.
 - 2. Set $P' = P |x\rangle \langle x|$, $Q' = Q |y\rangle \langle y|$.
 - 3. Observe $||[P', Q']||_{\mathcal{L}^2} \le ||[P, Q]||_{\mathcal{L}^2}$.
 - 4. Repeat. \Rightarrow Get two 'almost parallel ONB's' of eigenvectors of P and Q. \Rightarrow There is an $R = R^* = R^2$ with [R, Q] = 0 and $||R P||_{\mathcal{L}^2} \le 2\varepsilon$.
- Now let $0 < \lambda, \mu \le 1$, $A = \lambda \cdot P$, $B = \mu \cdot Q$ and $||[A, B]||_{\mathcal{L}^2} = \lambda \mu ||[P, Q]||_{\mathcal{L}^2} \le \varepsilon$.
- \Rightarrow A and B almost commute if they have almost the same eigenvectors or if their eigenvalues are almost degenerate.

- Let $P = P^* = P^2$, $Q = Q^* = Q^2 \in \mathbb{C}^{N \times N}$ be orthogonal projections.
- Lemma: If $||[P, Q]||_{\mathcal{L}^2} \leq ||[P, Q]||_{op} \leq \varepsilon \ll 1$ then
- (a) $||PQ||_{op} \ge 1 2\varepsilon$ (almost parallel vectors $x \in \text{Ran}(P)$, $y \in \text{Ran}(Q)$ exist) or
- (b) $||PQ||_{op} \leq 2\varepsilon$ (almost orthogonal subspaces).
- Construction of almost the same ONB of eigenvectors of P and Q:
 - 1. If $||PQ||_{op} \ge 1 2\varepsilon$ then choose normalized $x \in \text{Ran}(P)$, $y \in \text{Ran}(Q)$ such that $||PQ||_{op} = \langle x|y \rangle$.
 - 2. Set $P' = P |x\rangle \langle x|$, $Q' = Q |y\rangle \langle y|$.
 - 3. Observe $||[P', Q']||_{\mathcal{L}^2} \le ||[P, Q]||_{\mathcal{L}^2}$.
 - 4. Repeat. \Rightarrow Get two 'almost parallel ONB's' of eigenvectors of P and Q. \Rightarrow There is an $R = R^* = R^2$ with [R, Q] = 0 and $||R P||_{\mathcal{L}^2} \le 2\varepsilon$.
- Now let $0 < \lambda, \mu \le 1, A = \lambda \cdot P, B = \mu \cdot Q$ and $\|[A, B]\|_{\mathcal{L}^2} = \lambda \mu \|[P, Q]\|_{\mathcal{L}^2} \le \varepsilon$.
- \Rightarrow A and B almost commute if they have almost the same eigenvectors or if their eigenvalues are almost degenerate.

- Let $P = P^* = P^2$, $Q = Q^* = Q^2 \in \mathbb{C}^{N \times N}$ be orthogonal projections.
- Lemma: If $||[P, Q]||_{\mathcal{L}^2} \leq ||[P, Q]||_{op} \leq \varepsilon \ll 1$ then
- (a) $||PQ||_{op} \ge 1 2\varepsilon$ (almost parallel vectors $x \in \text{Ran}(P)$, $y \in \text{Ran}(Q)$ exist) or
- (b) $||PQ||_{op} \leq 2\varepsilon$ (almost orthogonal subspaces).
- Construction of almost the same ONB of eigenvectors of P and Q:
 - 1. If $||PQ||_{op} \ge 1 2\varepsilon$ then choose normalized $x \in \text{Ran}(P)$, $y \in \text{Ran}(Q)$ such that $||PQ||_{op} = \langle x|y\rangle$.
 - 2. Set $P' = P |x\rangle \langle x|$, $Q' = Q |y\rangle \langle y|$.
 - 3. Observe $||[P', Q']||_{\mathcal{L}^2} \le ||[P, Q]||_{\mathcal{L}^2}$.
 - 4. Repeat. \Rightarrow Get two 'almost parallel ONB's' of eigenvectors of P and Q. \Rightarrow There is an $R = R^* = R^2$ with [R, Q] = 0 and $||R P||_{\mathcal{L}^2} \le 2\varepsilon$.
- Now let $0 < \lambda$, $\mu \le 1$, $A = \lambda \cdot P$, $B = \mu \cdot Q$ and $\|[A, B]\|_{\mathcal{L}^2} = \lambda \mu \|[P, Q]\|_{\mathcal{L}^2} \le \varepsilon$.
- \Rightarrow A and B almost commute if they have almost the same eigenvectors or if their eigenvalues are almost degenerate.

- Let $P = P^* = P^2$, $Q = Q^* = Q^2 \in \mathbb{C}^{N \times N}$ be orthogonal projections.
- Lemma: If $||[P,Q]||_{\mathcal{L}^2} \leq ||[P,Q]||_{op} \leq \varepsilon \ll 1$ then
- (a) $||PQ||_{op} \ge 1 2\varepsilon$ (almost parallel vectors $x \in \text{Ran}(P)$, $y \in \text{Ran}(Q)$ exist) or
- (b) $||PQ||_{op} \leq 2\varepsilon$ (almost orthogonal subspaces).
- Construction of almost the same ONB of eigenvectors of P and Q:
 - 1. If $||PQ||_{op} \ge 1 2\varepsilon$ then choose normalized $x \in \text{Ran}(P)$, $y \in \text{Ran}(Q)$ such that $||PQ||_{op} = \langle x|y\rangle$.
 - 2. Set $P' = P |x\rangle \langle x|$, $Q' = Q |y\rangle \langle y|$.
 - 3. Observe $||[P', Q']||_{\mathcal{L}^2} \le ||[P, Q]||_{\mathcal{L}^2}$.
 - 4. Repeat. \Rightarrow Get two 'almost parallel ONB's' of eigenvectors of P and Q. \Rightarrow There is an $R = R^* = R^2$ with [R, Q] = 0 and $||R P||_{\mathcal{L}^2} \le 2\varepsilon$.
- Now let $0 < \lambda$, $\mu \le 1$, $A = \lambda \cdot P$, $B = \mu \cdot Q$ and $\|[A, B]\|_{\mathcal{L}^2} = \lambda \mu \|[P, Q]\|_{\mathcal{L}^2} \le \varepsilon$.
- \Rightarrow A and B almost commute if they have almost the same eigenvectors or if their eigenvalues are almost degenerate.

- Proposed by R. W. Brockett, 91' and F. Wegner, '91.
- Further developed by V. Bach, J.B. Bru, '10.

Theorem (V.B., J.B.B., '10: Brockett-Wegner-Flow)

Let \mathcal{H} be a complex separable Hilbert space, $A=A^*, B=B^*\in\mathcal{L}^2(\mathcal{H})$ and B>0, then

$$\dot{A}_t = [A_t, [A_t, B]], \quad A_{t=0} = A,$$

- Problem: In general, A_{∞} is not close to A because of two reasons:
 - 1. Only A is changing, not B.
 - 2. $||A_t B||$ is monotonically decreasing.

- Proposed by R. W. Brockett, 91' and F. Wegner, '91.
- Further developed by V. Bach, J.B. Bru, '10.

Theorem (V.B., J.B.B., '10: Brockett-Wegner-Flow)

Let $\mathcal H$ be a complex separable Hilbert space, $A=A^*, B=B^*\in\mathcal L^2(\mathcal H)$ and B>0, then

$$\dot{A}_t = [A_t, [A_t, B]], \quad A_{t=0} = A,$$

- Problem: In general, A_{∞} is not close to A because of two reasons:
 - 1. Only A is changing, not B.
 - 2. $||A_t B||$ is monotonically decreasing.

- Proposed by R. W. Brockett, 91' and F. Wegner, '91.
- Further developed by V. Bach, J.B. Bru, '10.

Theorem (V.B., J.B.B., '10: Brockett-Wegner-Flow)

Let \mathcal{H} be a complex separable Hilbert space, $A=A^*, B=B^*\in\mathcal{L}^2(\mathcal{H})$ and B>0, then

$$\dot{A}_t = [A_t, [A_t, B]], \quad A_{t=0} = A,$$

- Problem: In general, A_{∞} is not close to A because of two reasons:
 - 1. Only A is changing, not B.
 - 2. $||A_t B||$ is monotonically decreasing.

- Proposed by R. W. Brockett, 91' and F. Wegner, '91.
- Further developed by V. Bach, J.B. Bru, '10.

Theorem (V.B., J.B.B., '10: Brockett-Wegner-Flow)

Let \mathcal{H} be a complex separable Hilbert space, $A=A^*$, $B=B^*\in\mathcal{L}^2(\mathcal{H})$ and B>0, then

$$\dot{A}_t = [A_t, [A_t, B]], \quad A_{t=0} = A,$$

- Problem: In general, A_{∞} is not close to A because of two reasons:
 - 1. Only A is changing, not B.
 - 2. $||A_t B||$ is monotonically decreasing.

- Proposed by R. W. Brockett, 91' and F. Wegner, '91.
- Further developed by V. Bach, J.B. Bru, '10.

Theorem (V.B., J.B.B., '10: Brockett-Wegner-Flow)

Let \mathcal{H} be a complex separable Hilbert space, $A=A^*$, $B=B^*\in\mathcal{L}^2(\mathcal{H})$ and B>0, then

$$\dot{A}_t = [A_t, [A_t, B]], \quad A_{t=0} = A,$$

- Problem: In general, A_{∞} is not close to A because of two reasons:
 - 1. Only A is changing, not B.
 - 2. $||A_t B||$ is monotonically decreasing.

- Proposed by R. W. Brockett, 91' and F. Wegner, '91.
- Further developed by V. Bach, J.B. Bru, '10.

Theorem (V.B., J.B.B., '10: Brockett-Wegner-Flow)

Let $\mathcal H$ be a complex separable Hilbert space, $A=A^*$, $B=B^*\in\mathcal L^2(\mathcal H)$ and B>0, then

$$\dot{A}_t = [A_t, [A_t, B]], \quad A_{t=0} = A,$$

- Problem: In general, A_{∞} is not close to A because of two reasons:
 - 1. Only A is changing, not B.
 - 2. $||A_t B||$ is monotonically decreasing.

Theorem (1, JG 25'+)

Let \mathcal{H} be a complex separable Hilbert space and $A, B \in \mathcal{L}^2(\mathcal{H})$ be two self-adjoint Hilbert-Schmidt operators. Then, the differential equation

$$\dot{A}_t = [B_t, [A_t, B_t]], \quad A_0 = A,$$
 $\dot{B}_t = [A_t, [B_t, A_t]], \quad B_0 = B,$
(2)

has a unique global solution $(A_t, B_t)_{t>0}$ that satisfies

$$\lim_{t \to \infty} \sqrt{t} \cdot [A_t, B_t] = 0. \tag{3}$$

Moreover, if $dim(\mathcal{H})=N<\infty$, then the solution converges for $t o\infty$ in Hilbert-Schmidt norm $(A_t,B_t) o (A_\infty,B_\infty)$ and is close to its initial value, i.e.,

$$|A - A_{\infty}|_{\mathcal{L}^{2}}^{2} + ||B - B_{\infty}|_{\mathcal{L}^{2}}^{2} \le 4C(N)||[A, B]||_{\mathcal{L}^{2}} < 2N^{3}||[A, B]||_{\mathcal{L}^{2}}, \tag{4}$$

where $\mathsf{C}(\mathsf{N}) < \mathsf{N}^3/2$ is the optimal constant of

 $||[D, E]||_{\mathcal{L}^2}^3 \leq C(N)(||[D, [D, E]]||_{\mathcal{L}^2}^2 + ||[E, [E, D]]||_{\mathcal{L}^2}^2), \ \forall D = D^*, E = E^* \in \mathcal{L}^2(\mathcal{H}).$

Theorem (1, JG 25'+)

Let \mathcal{H} be a complex separable Hilbert space and $A, B \in \mathcal{L}^2(\mathcal{H})$ be two self-adjoint Hilbert-Schmidt operators. Then, the differential equation

$$\dot{A}_t = [B_t, [A_t, B_t]], \quad A_0 = A,$$
 $\dot{B}_t = [A_t, [B_t, A_t]], \quad B_0 = B,$
(2)

has a unique global solution $(A_t, B_t)_{t>0}$ that satisfies

$$\lim_{t\to\infty} \sqrt{t} \cdot [A_t, B_t] = 0. \tag{3}$$

Moreover, if $dim(\mathcal{H})=N<\infty$, then the solution converges for $t o\infty$ in Hilbert-Schmidt norm $(A_t,B_t) o (A_\infty,B_\infty)$ and is close to its initial value, i.e.,

$$|A - A_{\infty}|_{\mathcal{L}^{2}}^{2} + ||B - B_{\infty}|_{\mathcal{L}^{2}}^{2} \le 4C(N)||[A, B]||_{\mathcal{L}^{2}} < 2N^{3}||[A, B]||_{\mathcal{L}^{2}}, \tag{4}$$

where $\mathsf{C}(\mathsf{\,N}) < \mathsf{N}^3/2$ is the optimal constant of

 $\|[D,E]\|_{\mathcal{L}^2}^3 \leq C(N)(\|[D,[D,E]]\|_{\mathcal{L}^2}^2 + \|[E,[E,D]]\|_{\mathcal{L}^2}^2), \ \forall D=D^*, E=E^* \in \mathcal{L}^2(\mathcal{H}).$

Theorem (1, JG 25'+)

Let \mathcal{H} be a complex separable Hilbert space and $A, B \in \mathcal{L}^2(\mathcal{H})$ be two self-adjoint Hilbert-Schmidt operators. Then, the differential equation

$$\dot{A}_t = [B_t, [A_t, B_t]], \quad A_0 = A,$$
 $\dot{B}_t = [A_t, [B_t, A_t]], \quad B_0 = B,$
(2)

has a unique global solution $(A_t, B_t)_{t>0}$ that satisfies

$$\lim_{t\to\infty} \sqrt{t} \cdot [A_t, B_t] = 0. \tag{3}$$

Moreover, if $\dim(\mathcal{H}) = N < \infty$, then the solution converges for $t \to \infty$ in Hilbert-Schmidt norm $(A_t, B_t) \to (A_\infty, B_\infty)$ and is close to its initial value, i.e.,

$$\|A - A_{\infty}\|_{\mathcal{L}^{2}}^{2} + \|B - B_{\infty}\|_{\mathcal{L}^{2}}^{2} \le 4C(N)\|[A, B]\|_{\mathcal{L}^{2}} < 2N^{3}\|[A, B]\|_{\mathcal{L}^{2}}, \tag{4}$$

where ${\sf C}({\sf N}) < {\sf N}^3/2$ is the optimal constant of

 $||[D, E]||_{\mathcal{L}^2}^3 \leq C(N)(||[D, [D, E]]||_{\mathcal{L}^2}^2 + ||[E, [E, D]]||_{\mathcal{L}^2}^2), \ \forall D = D^*, E = E^* \in \mathcal{L}^2(\mathcal{H}).$

Theorem (1, JG 25'+)

Let \mathcal{H} be a complex separable Hilbert space and $A, B \in \mathcal{L}^2(\mathcal{H})$ be two self-adjoint Hilbert-Schmidt operators. Then, the differential equation

$$\dot{A}_t = [B_t, [A_t, B_t]], \quad A_0 = A,$$
 $\dot{B}_t = [A_t, [B_t, A_t]], \quad B_0 = B,$
(2)

has a unique global solution $(A_t, B_t)_{t>0}$ that satisfies

$$\lim_{t\to\infty} \sqrt{t} \cdot [A_t, B_t] = 0. \tag{3}$$

Moreover, if $\dim(\mathcal{H}) = N < \infty$, then the solution converges for $t \to \infty$ in Hilbert-Schmidt norm $(A_t, B_t) \to (A_\infty, B_\infty)$ and is close to its initial value, i.e.,

$$\|A - A_{\infty}\|_{\mathcal{L}^{2}}^{2} + \|B - B_{\infty}\|_{\mathcal{L}^{2}}^{2} \le 4C(N)\|[A, B]\|_{\mathcal{L}^{2}} < 2N^{3}\|[A, B]\|_{\mathcal{L}^{2}}, \tag{4}$$

where $C(N) < N^3/2$ is the optimal constant of

 $||[D, E]||_{\mathcal{L}^2}^3 \leq C(N)(||[D, [D, E]]||_{\mathcal{L}^2}^2 + ||[E, [E, D]]||_{\mathcal{L}^2}^2), \ \forall D = D^*, E = E^* \in \mathcal{L}^2(\mathcal{H})$

Theorem (1, JG 25'+)

Let \mathcal{H} be a complex separable Hilbert space and $A, B \in \mathcal{L}^2(\mathcal{H})$ be two self-adjoint Hilbert-Schmidt operators. Then, the differential equation

$$\dot{A}_t = [B_t, [A_t, B_t]], \quad A_0 = A,$$
 $\dot{B}_t = [A_t, [B_t, A_t]], \quad B_0 = B,$
(2)

has a unique global solution $(A_t, B_t)_{t>0}$ that satisfies

$$\lim_{t\to\infty} \sqrt{t} \cdot [A_t, B_t] = 0. \tag{3}$$

Moreover, if $\dim(\mathcal{H}) = N < \infty$, then the solution converges for $t \to \infty$ in Hilbert-Schmidt norm $(A_t, B_t) \to (A_\infty, B_\infty)$ and is close to its initial value, i.e.,

$$\|A - A_{\infty}\|_{\mathcal{L}^{2}}^{2} + \|B - B_{\infty}\|_{\mathcal{L}^{2}}^{2} \le 4C(N)\|[A, B]\|_{\mathcal{L}^{2}} < 2N^{3}\|[A, B]\|_{\mathcal{L}^{2}}, \tag{4}$$

where $C(N) < N^3/2$ is the optimal constant of

$$\|[D,E]\|_{\mathcal{L}^2}^3 \leq C(N)(\|[D,[D,E]]\|_{\mathcal{L}^2}^2 + \|[E,[E,D]]\|_{\mathcal{L}^2}^2), \ \forall D=D^*, E=E^* \in \mathcal{L}^2(\mathcal{H}).$$

- Local existence and uniqueness is clear.
- Norm of A_t and B_t is monotonically decreasing because of

$$\frac{\mathrm{d}}{\mathrm{d}t} \|A_t\|_{\mathcal{L}^2}^2 = 2\mathrm{Tr}(A_t \dot{A}_t) = 2\mathrm{Tr}(A_t [B_t, [A_t, B_t]])$$

$$= 2\mathrm{Tr}([A_t, B_t][A_t, B_t]) = -2\|[A_t, B_t]\|_{\mathcal{L}^2}^2 \le 0.$$

- With $f_t := \|[A_t, B_t]\|_{\mathcal{L}^2}^2/2$, we have $\dot{f}_t = -\|\dot{A}_t\|_{\mathcal{L}^2}^2 \|\dot{B}_t\|_{\mathcal{L}^2}^2 \le 0$ and $\frac{\mathrm{d}}{\mathrm{d}t}\|A_t\|_{\mathcal{L}^2}^2 = -4f_t$ and hence $\|A\|^2 \|A_T\|^2 = 4\int_0^T f_t \, \mathrm{d}t \le \|A\|^2$ for all T > 0. $\Rightarrow \lim_{t \to \infty} t \cdot f_t = 0 \Rightarrow \dot{f}_t \le C/t^2$.
- lacksquare For convergence of A_t , B_t for $t o\infty$ we need integrability of

$$|A_t - A_s|| + ||B_t - B_s|| \le \int_s^t (||\dot{A}_\tau|| + ||\dot{B}_\tau||) d\tau \le \int_s^t \sqrt{-2\dot{f}_\tau} d\tau.$$

- Local existence and uniqueness is clear.
- Norm of A_t and B_t is monotonically decreasing because of

$$\frac{\mathrm{d}}{\mathrm{d}t} \|A_t\|_{\mathcal{L}^2}^2 = 2\mathrm{Tr}(A_t \dot{A}_t) = 2\mathrm{Tr}(A_t [B_t, [A_t, B_t]])$$

$$= 2\mathrm{Tr}([A_t, B_t][A_t, B_t]) = -2\|[A_t, B_t]\|_{\mathcal{L}^2}^2 \le 0.$$

- With $f_t := \|[A_t, B_t]\|_{\mathcal{L}^2}^2/2$, we have $\dot{f}_t = -\|\dot{A}_t\|_{\mathcal{L}^2}^2 \|\dot{B}_t\|_{\mathcal{L}^2}^2 \le 0$ and $\frac{\mathrm{d}}{\mathrm{d}t}\|A_t\|_{\mathcal{L}^2}^2 = -4f_t$ and hence $\|A\|^2 \|A_T\|^2 = 4\int_0^T f_t \,\mathrm{d}t \le \|A\|^2$ for all T > 0. $\Rightarrow \lim_{t \to \infty} t \cdot f_t = 0 \Rightarrow \dot{f}_t \le C/t^2$.
- For convergence of A_t , B_t for $t \to \infty$ we need integrability of

$$||A_t - A_s|| + ||B_t - B_s|| \le \int_s^t (||\dot{A_\tau}|| + ||\dot{B_\tau}||) d\tau \le \int_s^t \sqrt{-2\dot{f_\tau}} d\tau.$$

- Local existence and uniqueness is clear.
- Norm of A_t and B_t is monotonically decreasing because of

$$\frac{\mathrm{d}}{\mathrm{d}t} \|A_t\|_{\mathcal{L}^2}^2 = 2\mathrm{Tr}(A_t \dot{A}_t) = 2\mathrm{Tr}(A_t [B_t, [A_t, B_t]])
= 2\mathrm{Tr}([A_t, B_t][A_t, B_t]) = -2 \|[A_t, B_t]\|_{\mathcal{L}^2}^2 \le 0.$$

- With $f_t := \|[A_t, B_t]\|_{\mathcal{L}^2}^2/2$, we have $\dot{f}_t = -\|\dot{A}_t\|_{\mathcal{L}^2}^2 \|\dot{B}_t\|_{\mathcal{L}^2}^2 \le 0$ and $\frac{\mathrm{d}}{\mathrm{d}t}\|A_t\|_{\mathcal{L}^2}^2 = -4f_t$ and hence $\|A\|^2 \|A_T\|^2 = 4\int_0^T f_t \,\mathrm{d}t \le \|A\|^2$ for all T > 0. $\Rightarrow \lim_{t \to \infty} t \cdot f_t = 0 \Rightarrow \dot{f}_t \le C/t^2$.
- For convergence of A_t , B_t for $t \to \infty$ we need integrability of

$$||A_t - A_s|| + ||B_t - B_s|| \le \int_s^t (||\dot{A_\tau}|| + ||\dot{B_\tau}||) d\tau \le \int_s^t \sqrt{-2\dot{f_\tau}} d\tau.$$

- Local existence and uniqueness is clear.
- Norm of A_t and B_t is monotonically decreasing because of

$$\frac{\mathrm{d}}{\mathrm{d}t} \|A_t\|_{\mathcal{L}^2}^2 = 2\mathrm{Tr}(A_t \dot{A}_t) = 2\mathrm{Tr}(A_t [B_t, [A_t, B_t]])
= 2\mathrm{Tr}([A_t, B_t][A_t, B_t]) = -2\|[A_t, B_t]\|_{\mathcal{L}^2}^2 \le 0.$$

- With $f_t := \|[A_t, B_t]\|_{\mathcal{L}^2}^2/2$, we have $\dot{f}_t = -\|\dot{A}_t\|_{\mathcal{L}^2}^2 \|\dot{B}_t\|_{\mathcal{L}^2}^2 \le 0$ and $\frac{\mathrm{d}}{\mathrm{d}t}\|A_t\|_{\mathcal{L}^2}^2 = -4f_t$ and hence $\|A\|^2 \|A_T\|^2 = 4\int_0^T f_t \, \mathrm{d}t \le \|A\|^2$ for all T > 0. $\Rightarrow \lim_{t \to \infty} t \cdot f_t = 0 \Rightarrow \dot{f}_t \le C/t^2$.
- For convergence of A_t , B_t for $t \to \infty$ we need integrability of

$$||A_t - A_s|| + ||B_t - B_s|| \le \int_s^t (||\dot{A_\tau}|| + ||\dot{B_\tau}||) d\tau \le \int_s^t \sqrt{-2\dot{f_\tau}} d\tau.$$

- Local existence and uniqueness is clear.
- Norm of A_t and B_t is monotonically decreasing because of

$$\frac{\mathrm{d}}{\mathrm{d}t} \|A_t\|_{\mathcal{L}^2}^2 = 2\mathrm{Tr}(A_t \dot{A}_t) = 2\mathrm{Tr}(A_t [B_t, [A_t, B_t]])
= 2\mathrm{Tr}([A_t, B_t][A_t, B_t]) = -2\|[A_t, B_t]\|_{\mathcal{L}^2}^2 \le 0.$$

- With $f_t := \|[A_t, B_t]\|_{\mathcal{L}^2}^2/2$, we have $\dot{f}_t = -\|\dot{A}_t\|_{\mathcal{L}^2}^2 \|\dot{B}_t\|_{\mathcal{L}^2}^2 \le 0$ and $\frac{\mathrm{d}}{\mathrm{d}t}\|A_t\|_{\mathcal{L}^2}^2 = -4f_t$ and hence $\|A\|^2 \|A_T\|^2 = 4\int_0^T f_t \, \mathrm{d}t \le \|A\|^2$ for all T > 0. $\Rightarrow \lim_{t \to \infty} t \cdot f_t = 0 \Rightarrow \dot{f}_t \le C/t^2$.
- For convergence of A_t , B_t for $t \to \infty$ we need integrability of

$$||A_t - A_s|| + ||B_t - B_s|| \le \int_s^t (||\dot{A}_\tau|| + ||\dot{B}_\tau||) d\tau \le \int_s^t \sqrt{-2\dot{f}_\tau} d\tau$$

- Local existence and uniqueness is clear.
- Norm of A_t and B_t is monotonically decreasing because of

$$\frac{\mathrm{d}}{\mathrm{d}t} \|A_t\|_{\mathcal{L}^2}^2 = 2\mathrm{Tr}(A_t \dot{A}_t) = 2\mathrm{Tr}(A_t [B_t, [A_t, B_t]])
= 2\mathrm{Tr}([A_t, B_t][A_t, B_t]) = -2\|[A_t, B_t]\|_{\mathcal{L}^2}^2 \le 0.$$

- With $f_t := \|[A_t, B_t]\|_{\mathcal{L}^2}^2/2$, we have $\dot{f}_t = -\|\dot{A}_t\|_{\mathcal{L}^2}^2 \|\dot{B}_t\|_{\mathcal{L}^2}^2 \le 0$ and $\frac{\mathrm{d}}{\mathrm{d}t}\|A_t\|_{\mathcal{L}^2}^2 = -4f_t$ and hence $\|A\|^2 \|A_T\|^2 = 4\int_0^T f_t \, \mathrm{d}t \le \|A\|^2$ for all T > 0. $\Rightarrow \lim_{t \to \infty} t \cdot f_t = 0 \Rightarrow \dot{f}_t \le C/t^2$.
- For convergence of A_t , B_t for $t \to \infty$ we need integrability of

$$|A_t - A_s|| + ||B_t - B_s|| \le \int_s^t (||\dot{A}_\tau|| + ||\dot{B}_\tau||) d\tau \le \int_s^t \sqrt{-2\dot{f}_\tau} d\tau.$$

- Local existence and uniqueness is clear.
- Norm of A_t and B_t is monotonically decreasing because of

$$\frac{\mathrm{d}}{\mathrm{d}t} \|A_t\|_{\mathcal{L}^2}^2 = 2\mathrm{Tr}(A_t \dot{A}_t) = 2\mathrm{Tr}(A_t [B_t, [A_t, B_t]])
= 2\mathrm{Tr}([A_t, B_t][A_t, B_t]) = -2\|[A_t, B_t]\|_{\mathcal{L}^2}^2 \le 0.$$

- With $f_t := \|[A_t, B_t]\|_{\mathcal{L}^2}^2/2$, we have $\dot{f}_t = -\|\dot{A}_t\|_{\mathcal{L}^2}^2 \|\dot{B}_t\|_{\mathcal{L}^2}^2 \le 0$ and $\frac{\mathrm{d}}{\mathrm{d}t}\|A_t\|_{\mathcal{L}^2}^2 = -4f_t$ and hence $\|A\|^2 \|A_T\|^2 = 4\int_0^T f_t \,\mathrm{d}t \le \|A\|^2$ for all T > 0. $\Rightarrow \lim_{t \to \infty} t \cdot f_t = 0 \Rightarrow \dot{f}_t \le C/t^2$.
- For convergence of A_t , B_t for $t \to \infty$ we need integrability of

$$||A_t - A_s|| + ||B_t - B_s|| \le \int_s^t (||\dot{A_\tau}|| + ||\dot{B_\tau}||) d\tau \le \int_s^t \sqrt{-2\dot{f_\tau}} d\tau.$$

- Local existence and uniqueness is clear.
- Norm of A_t and B_t is monotonically decreasing because of

$$\frac{\mathrm{d}}{\mathrm{d}t} \|A_t\|_{\mathcal{L}^2}^2 = 2\mathrm{Tr}(A_t \dot{A}_t) = 2\mathrm{Tr}(A_t [B_t, [A_t, B_t]])
= 2\mathrm{Tr}([A_t, B_t][A_t, B_t]) = -2\|[A_t, B_t]\|_{\mathcal{L}^2}^2 \le 0.$$

- With $f_t := \|[A_t, B_t]\|_{\mathcal{L}^2}^2/2$, we have $\dot{f}_t = -\|\dot{A}_t\|_{\mathcal{L}^2}^2 \|\dot{B}_t\|_{\mathcal{L}^2}^2 \le 0$ and $\frac{\mathrm{d}}{\mathrm{d}t}\|A_t\|_{\mathcal{L}^2}^2 = -4f_t$ and hence $\|A\|^2 \|A_T\|^2 = 4\int_0^T f_t \,\mathrm{d}t \le \|A\|^2$ for all T > 0. $\Rightarrow \lim_{t \to \infty} t \cdot f_t = 0 \Rightarrow \dot{f}_t \le C/t^2$.
- For convergence of A_t , B_t for $t \to \infty$ we need integrability of

$$||A_t - A_s|| + ||B_t - B_s|| \le \int_s^t (||\dot{A_\tau}|| + ||\dot{B_\tau}||) d\tau \le \int_s^t \sqrt{-2\dot{f_\tau}} d\tau.$$

Recall that for
$$f_t = \frac{\|[A_t, B_t]\|_{\mathcal{L}^2}^2}{2}$$
 we have $\dot{f}_t = -\|[A_t, [A_t, B_t]]\|_{\mathcal{L}^2}^2 - \|[B_t, [B_t, A_t]]\|_{\mathcal{L}^2}.$

■ Suppose there is $\gamma \geq 1$ and a constant $C < \infty$ such that for all self-adjoint A, B we have

$$||[A, B]||_{\mathcal{L}^2}^{2\gamma} \le C(||[A, [A, B]]||_{\mathcal{L}^2}^2 + ||[B, [B, A]]||_{\mathcal{L}^2}^2).$$
 (5)

- \Rightarrow $\dot{f}_t \leq -rac{f_t^{\gamma}}{C}$ so f_t would be a subsolution to $\dot{g}_t = -rac{g_t^{\gamma}}{C}$.
- \Rightarrow $f_t \leq C' \exp[-t]$ for $\gamma = 1$ or $f_t \leq C' (1+t)^{-\frac{1}{\gamma-1}}$
- \Rightarrow Sufficient decay if $\gamma \in [1, 2)$.

$$||[A, B]||_{\mathcal{L}^2}^4 \le ||B||_{\mathcal{L}^2}^2 ||[A, [A, B]]||_{\mathcal{L}^2}^2$$

Recall that for $f_t = \frac{\|[A_t, B_t]\|_{\mathcal{L}^2}^2}{2}$ we have $\dot{f}_t = -\|[A_t, [A_t, B_t]]\|_{\mathcal{L}^2}^2 - \|[B_t, [B_t, A_t]]\|_{\mathcal{L}^2}.$

■ Suppose there is $\gamma \geq 1$ and a constant $C < \infty$ such that for all self-adjoint A, B we have

$$||[A, B]||_{\mathcal{L}^2}^{2\gamma} \le C(||[A, [A, B]]||_{\mathcal{L}^2}^2 + ||[B, [B, A]]||_{\mathcal{L}^2}^2).$$
 (5)

- \Rightarrow $\dot{f}_t \leq -rac{f_t^{\,\gamma}}{C}$ so f_t would be a subsolution to $\dot{g}_t = -rac{g_t^{\,\gamma}}{C}$
- $\Rightarrow f_t \leq C' \exp[-t] ext{ for } \gamma = 1 ext{ or } f_t \leq C' (1+t)^{-\frac{1}{\gamma-1}}$
- \Rightarrow Sufficient decay if $\gamma \in [1,2)$.

$$||[A, B]||_{\mathcal{L}^2}^4 \le ||B||_{\mathcal{L}^2}^2 ||[A, [A, B]]||_{\mathcal{L}^2}^2$$

Recall that for $f_t = \frac{\|[A_t, B_t]\|_{\mathcal{L}^2}^2}{2}$ we have $\dot{f}_t = -\|[A_t, [A_t, B_t]]\|_{\mathcal{L}^2}^2 - \|[B_t, [B_t, A_t]]\|_{\mathcal{L}^2}.$

■ Suppose there is $\gamma \geq 1$ and a constant $C < \infty$ such that for all self-adjoint A, B we have

$$||[A, B]||_{\mathcal{L}^2}^{2\gamma} \le C(||[A, [A, B]]||_{\mathcal{L}^2}^2 + ||[B, [B, A]]||_{\mathcal{L}^2}^2).$$
 (5)

- $\Rightarrow \dot{f}_t \leq -rac{f_t^{\gamma}}{C}$ so f_t would be a subsolution to $\dot{g}_t = -rac{g_t^{\gamma}}{C}$.
- \Rightarrow $f_t \leq \mathit{C}' \exp[-t]$ for $\gamma = 1$ or $f_t \leq \mathit{C}' (1+t)^{-\frac{1}{\gamma-1}}$
- \Rightarrow Sufficient decay if $\gamma \in [1,2)$.

$$||[A, B]||_{\mathcal{L}^2}^4 \le ||B||_{\mathcal{L}^2}^2 ||[A, [A, B]]||_{\mathcal{L}^2}^2$$

Recall that for $f_t = \frac{\|[A_t, B_t]\|_{\mathcal{L}^2}^2}{2}$ we have $\dot{f}_t = -\|[A_t, [A_t, B_t]]\|_{\mathcal{L}^2}^2 - \|[B_t, [B_t, A_t]]\|_{\mathcal{L}^2}.$

■ Suppose there is $\gamma \geq 1$ and a constant $C < \infty$ such that for all self-adjoint A,B we have

$$||[A, B]||_{\mathcal{L}^2}^{2\gamma} \le C(||[A, [A, B]]||_{\mathcal{L}^2}^2 + ||[B, [B, A]]||_{\mathcal{L}^2}^2).$$
 (5)

 $\Rightarrow \dot{f}_t \leq -rac{f_t^{\gamma}}{C}$ so f_t would be a subsolution to $\dot{g}_t = -rac{g_t^{\gamma}}{C}$.

$$\Rightarrow f_t \leq C' \exp[-t] ext{ for } \gamma = 1 ext{ or } f_t \leq C' (1+t)^{-\frac{1}{\gamma-1}}.$$

 \Rightarrow Sufficient decay if $\gamma \in [1,2)$.

$$||[A, B]||_{\mathcal{L}^2}^4 \le ||B||_{\mathcal{L}^2}^2 ||[A, [A, B]]||_{\mathcal{L}^2}^2$$

Recall that for $f_t = \frac{\|[A_t, B_t]\|_{\mathcal{L}^2}^2}{2}$ we have $\dot{f}_t = -\|[A_t, [A_t, B_t]]\|_{\mathcal{L}^2}^2 - \|[B_t, [B_t, A_t]]\|_{\mathcal{L}^2}.$

■ Suppose there is $\gamma \geq 1$ and a constant $C < \infty$ such that for all self-adjoint A,B we have

$$||[A, B]||_{\mathcal{L}^2}^{2\gamma} \le C(||[A, [A, B]]||_{\mathcal{L}^2}^2 + ||[B, [B, A]]||_{\mathcal{L}^2}^2).$$
 (5)

- $\Rightarrow \dot{f}_t \leq -rac{f_t^{\gamma}}{C}$ so f_t would be a subsolution to $\dot{g}_t = -rac{g_t^{\gamma}}{C}$.
- $\Rightarrow f_t \leq C' \exp[-t] ext{ for } \gamma = 1 ext{ or } f_t \leq C' (1+t)^{-\frac{1}{\gamma-1}}.$
- \Rightarrow Sufficient decay if $\gamma \in [1, 2)$.

$$||[A, B]||_{\mathcal{L}^2}^4 \le ||B||_{\mathcal{L}^2}^2 ||[A, [A, B]]||_{\mathcal{L}^2}^2.$$

Recall that for $f_t = \frac{\|[A_t, B_t]\|_{\mathcal{L}^2}^2}{2}$ we have $\dot{f}_t = -\|[A_t, [A_t, B_t]]\|_{\mathcal{L}^2}^2 - \|[B_t, [B_t, A_t]]\|_{\mathcal{L}^2}.$

■ Suppose there is $\gamma \geq 1$ and a constant $C < \infty$ such that for all self-adjoint A,B we have

$$||[A, B]||_{\mathcal{L}^2}^{2\gamma} \le C(||[A, [A, B]]||_{\mathcal{L}^2}^2 + ||[B, [B, A]]||_{\mathcal{L}^2}^2).$$
 (5)

- $\Rightarrow \dot{f}_t \leq -\frac{f_t^{\gamma}}{C}$ so f_t would be a subsolution to $\dot{g}_t = -\frac{g_t^{\gamma}}{C}$.
- $\Rightarrow f_t \leq C' \exp[-t] ext{ for } \gamma = 1 ext{ or } f_t \leq C' (1+t)^{-\frac{1}{\gamma-1}}.$
- \Rightarrow Sufficient decay if $\gamma \in [1, 2)$.

$$||[A, B]||_{\mathcal{L}^2}^4 \le ||B||_{\mathcal{L}^2}^2 ||[A, [A, B]]||_{\mathcal{L}^2}^2.$$

Section 2

Iterated Commutator Estimates

Consider inequalities of the form

$$||[A, B]||_{\mathcal{L}^2}^{2\gamma} \le C(N) \Big(||[A, [A, B]]||_{\mathcal{L}^2}^2 + ||[B, [B, A]]||_{\mathcal{L}^2}^2 \Big),$$
 (6)

- In general, $\gamma = \frac{3}{2}$ is necessary, even for A, B self-adjoint.
- For all $N \ge 2$ and $C(N) < \infty$ there are diagonalizable $A, B \in \mathbb{C}^{N \times N}$ that violate (6).
- There are self-adjoint $A, B \in \mathbb{C}^{N \times N}$ saturating (6) with $C(N) = (N/4)^{3/2}$. These matrices also saturate (6) if $\|\cdot\|_{\mathcal{L}^2}$ is changed to $\|\cdot\|_{op}$ and $C(N) \sim \sqrt{N}$.

Consider inequalities of the form

$$||[A, B]||_{\mathcal{L}^2}^{2\gamma} \le C(N) \Big(||[A, [A, B]]||_{\mathcal{L}^2}^2 + ||[B, [B, A]]||_{\mathcal{L}^2}^2 \Big), \tag{6}$$

- In general, $\gamma = \frac{3}{2}$ is necessary, even for A, B self-adjoint.
- For all $N \ge 2$ and $C(N) < \infty$ there are diagonalizable $A, B \in \mathbb{C}^{N \times N}$ that violate (6).
- There are self-adjoint $A, B \in \mathbb{C}^{N \times N}$ saturating (6) with $C(N) = (N/4)^{3/2}$. These matrices also saturate (6) if $\|\cdot\|_{\mathcal{L}^2}$ is changed to $\|\cdot\|_{op}$ and $C(N) \sim \sqrt{N}$.

Consider inequalities of the form

$$||[A, B]||_{\mathcal{L}^2}^{2\gamma} \le C(N) \Big(||[A, [A, B]]||_{\mathcal{L}^2}^2 + ||[B, [B, A]]||_{\mathcal{L}^2}^2 \Big),$$
 (6)

- In general, $\gamma = \frac{3}{2}$ is necessary, even for A, B self-adjoint.
- For all $N \ge 2$ and $C(N) < \infty$ there are diagonalizable $A, B \in \mathbb{C}^{N \times N}$ that violate (6).
- There are self-adjoint $A, B \in \mathbb{C}^{N \times N}$ saturating (6) with $C(N) = (N/4)^{3/2}$. These matrices also saturate (6) if $\|\cdot\|_{\mathcal{L}^2}$ is changed to $\|\cdot\|_{op}$ and $C(N) \sim \sqrt{N}$.

Consider inequalities of the form

$$||[A, B]||_{\mathcal{L}^2}^{2\gamma} \le C(N) \Big(||[A, [A, B]]||_{\mathcal{L}^2}^2 + ||[B, [B, A]]||_{\mathcal{L}^2}^2 \Big), \tag{6}$$

- In general, $\gamma = \frac{3}{2}$ is necessary, even for A, B self-adjoint.
- For all $N \ge 2$ and $C(N) < \infty$ there are diagonalizable $A, B \in \mathbb{C}^{N \times N}$ that violate (6).
- There are self-adjoint $A, B \in \mathbb{C}^{N \times N}$ saturating (6) with $C(N) = (N/4)^{3/2}$. These matrices also saturate (6) if $\|\cdot\|_{\mathcal{L}^2}$ is changed to $\|\cdot\|_{op}$ and $C(N) \sim \sqrt{N}$.

Theorem (2, JG 25'+)

$$||[A, B]||_{\mathcal{L}^2}^3 \le C(N) \cdot (||[A, [A, B]]||_{\mathcal{L}^2}^2 + ||[B, [A, B]]||_{\mathcal{L}^2}^2).$$
 (7)

- If $A = A^*$ or $B = B^*$ has just two eigenvalues, i.e., $\sigma(A) = \{a_1, a_2\}$ then $C(N) \le \sqrt{N}/4$.
- With spectral gap $\Delta := \min\{|a-a'|: a \neq a' \in \sigma(A)\}$, one has $\|[A,B]\|_{\mathcal{L}^2}^2 \leq \frac{\|[A,[A,B]]\|_{\mathcal{L}^2}^2}{\Delta^2}$. \Rightarrow In this case $\dot{B}_t = [A,[B_t,A]]$ has a unique solution, $B_t \to B_\infty$ exponentially and $\|B_\infty B\|_{\mathcal{L}^2} \leq \frac{\|[A,B]\|_{\mathcal{L}^2}}{\Delta}$.

Theorem (2, JG 25'+)

$$||[A, B]||_{\mathcal{L}^2}^3 \le C(N) \cdot (||[A, [A, B]]||_{\mathcal{L}^2}^2 + ||[B, [A, B]]||_{\mathcal{L}^2}^2).$$
 (7)

- If $A = A^*$ or $B = B^*$ has just two eigenvalues, i.e., $\sigma(A) = \{a_1, a_2\}$ then $C(N) \le \sqrt{N}/4$.
- With spectral gap $\Delta := \min\{|a-a'| : a \neq a' \in \sigma(A)\}$, one has $\|[A,B]\|_{\mathcal{L}^2}^2 \leq \frac{\|[A,[A,B]]\|_{\mathcal{L}^2}^2}{\Delta^2}$. \Rightarrow In this case $\dot{B}_t = [A,[B_t,A]]$ has a unique solution, $B_t \to B_\infty$ exponentially and $\|B_\infty B\|_{\mathcal{L}^2} \leq \frac{\|[A,B]\|_{\mathcal{L}^2}}{\Delta}$.

Theorem (2, JG 25'+)

$$||[A, B]||_{\mathcal{L}^2}^3 \le C(N) \cdot (||[A, [A, B]]||_{\mathcal{L}^2}^2 + ||[B, [A, B]]||_{\mathcal{L}^2}^2). \tag{7}$$

- If $A = A^*$ or $B = B^*$ has just two eigenvalues, i.e., $\sigma(A) = \{a_1, a_2\}$ then $C(N) \le \sqrt{N}/4$.
- With spectral gap $\Delta := \min\{|a-a'| : a \neq a' \in \sigma(A)\}$, one has $\|[A,B]\|_{\mathcal{L}^2}^2 \le \frac{\|[A,[A,B]]\|_{\mathcal{L}^2}^2}{\Delta^2}$. \Rightarrow In this case $\dot{B}_t = [A,[B_t,A]]$ has a unique solution, $B_t \to B_\infty$ exponentially and $\|B_\infty B\|_{\mathcal{L}^2} \le \frac{\|[A,B]\|_{\mathcal{L}^2}}{\Delta}$.

Theorem (2, JG 25'+)

$$||[A, B]||_{\mathcal{L}^2}^3 \le C(N) \cdot (||[A, [A, B]]||_{\mathcal{L}^2}^2 + ||[B, [A, B]]||_{\mathcal{L}^2}^2). \tag{7}$$

- If $A = A^*$ or $B = B^*$ has just two eigenvalues, i.e., $\sigma(A) = \{a_1, a_2\}$ then $C(N) \leq \sqrt{N}/4$.
- With spectral gap $\Delta := \min\{|a-a'| : a \neq a' \in \sigma(A)\}$, one has $\|[A,B]\|_{\mathcal{L}^2}^2 \le \frac{\|[A,[A,B]]\|_{\mathcal{L}^2}^2}{\Delta^2}$. \Rightarrow In this case $\dot{B}_t = [A,[B_t,A]]$ has a unique solution, $B_t \to B_\infty$ exponentially and $\|B_\infty B\|_{\mathcal{L}^2} \le \frac{\|[A,B]\|_{\mathcal{L}^2}}{\Delta}$.

Definition of the Problem

Problem 1: Let A, B be two hermitian (or normal, unitary, complex, resp.) $N \times N$ matrices with $||A||_{op}$, $||B||_{op} \leq 1$ and $||[A, B]||_{op} = ||AB - BA||_{op} \leq \varepsilon$. Are there two hermitian (or normal, unitary, complex, resp.) matrices A', B' with [A', B'] = 0 and

$$||A - A'||_{op} + ||B - B'||_{op} \le f(\varepsilon),$$
 (1)

where $\lim_{\varepsilon \to 0} f(\varepsilon) = 0$?

Further Questions:

- How fast does f converge to 0 for $\varepsilon \to 0$?
- Does *f* depend on *N*?
- What about other norms? Hilbert-Schmidt/Frobenius, L^p -norms?

History of the Problem I

- First formulated by John v. Neumann, 1929.
- Communicated as 'Open Problem' by P. Rosenthal, '69, and P.R. Halmos '70.
- Affirmative Answers if *f* is **allowed to depend on** *N*:
 - W. Luxemburg and R. Taylor, '70 (complex matrices): For every $N \in \mathbb{N}$, there is a function $f_N(\varepsilon)$.
 - J. Bastian and K. Harrison, '74 (normal operators).
 - C. Pearcy and A. Shields, '79 (A self-adjoint, B complex): $f_N(\varepsilon) = \sqrt{\frac{(N-1)\varepsilon}{2}}$
- Negative Answers for *f* independent of *N*:
 - D. Voiculescu, 81' (triplets of hermitian matrices) and 83' (unitary operators).
 - K. R. Davidson, 85': A hermitian, B normal, A' hermitian, B' arbitrary.

History of the Problem II

- H. Lin, '95: first *N*-independent result for hermitian matrices.
- P. Friis and M. Rørdam, '96: shorter proof and generalization to certain classes of C^* -Algebras.
- M. B. Hastings, '09: $f(\varepsilon) \le \varepsilon^{1/5} \cdot E(1/\varepsilon)$.
- N. Filonov and I. Kachkovskiy, '10, and L. Glebsky, '10: Analogue for normalized Hilbert-Schmidt-norm $||A||^2 = \frac{1}{N} Tr(A^*A)$.

Open Questions: Results for regular Hilbert-Schmidt-norm/ other norms, (efficient) construction of A' and B'.

Applications

- G. A. Elliott, G. Gong, H. Lin, and C. Pasnicu. Abelian C^* -subalgebras of C^* -algebras of real rank zero and inductive limit C^* -algebras. Duke Math. J., 85:511–554, 1996.
- H. Lin. Classification of simple C^* -algebras and higher dimensional noncommutative tori. Ann. of Math., 157:521–544, 2003.
- M. B. Hastings. Topology and phases in fermionic systems. J. Stat. Mech., 2008:L01001, 2008.
- M. B. Hastings and T. A. Loring. Almost commuting matrices, localized Wannier functions, and the quantum Hall effect. J. Math. Phys., 51:015214, 2010.
- M. B. Hastings and T. A. Loring. Topological insulators and C^* -algebras: Theory and numerical practice. Annals of Physics, 326:1699–1759, 2011.
- Y. Ogata. Approximating macroscopic observables in quantum spin systems with commuting matrices. Journal of Functional Analysis, 264:2005–2033, 2013.

Content

- Almost Commuting Self-Adjoint Operators
 - When do matrices almost commute?
 - Diagonalyzing Flows

Iterated Commutator Estimates

When do hermitian Matrices almost commute?

- Let $P = P^* = P^2$, $Q = Q^* = Q^2 \in \mathbb{C}^{N \times N}$ be orthogonal projections.
- Lemma: If $||[P, Q]||_{C^2} \le ||[P, Q]||_{op} \le \varepsilon \ll 1$ then
- (a) $||PQ||_{op} \ge 1 2\varepsilon$ (almost parallel vectors $x \in \text{Ran}(P)$, $y \in \text{Ran}(Q)$ exist) or
- (b) $||PQ||_{op} \leq 2\varepsilon$ (almost orthogonal subspaces).
- Construction of almost the same ONB of eigenvectors of P and Q:
 - 1. If $||PQ||_{op} \ge 1 2\varepsilon$ then choose normalized $x \in \text{Ran}(P)$, $y \in \text{Ran}(Q)$ such that $||PQ||_{op} = \langle x|y \rangle$.
 - 2. Set $P' = P |x\rangle \langle x|$, $Q' = Q |y\rangle \langle y|$.
 - 3. Observe $||[P', Q']||_{\mathcal{L}^2} \le ||[P, Q]||_{\mathcal{L}^2}$.
 - 4. Repeat. \Rightarrow Get two 'almost parallel ONB's' of eigenvectors of P and Q. \Rightarrow There is an $R = R^* = R^2$ with [R, Q] = 0 and $||R P||_{\mathcal{L}^2} \le 2\varepsilon$.
- Now let $0 < \lambda$, $\mu \le 1$, $A = \lambda \cdot P$, $B = \mu \cdot Q$ and $\|[A, B]\|_{\mathcal{L}^2} = \lambda \mu \|[P, Q]\|_{\mathcal{L}^2} \le \varepsilon$.
- \Rightarrow A and B almost commute if they have almost the same eigenvectors or if their eigenvalues are almost degenerate.

- Proposed by R. W. Brockett, 91' and F. Wegner, '91.
- Further developed by V. Bach, J.B. Bru, '10.

Theorem (V.B., J.B.B., '10: Brockett-Wegner-Flow)

Let $\mathcal H$ be a complex separable Hilbert space, $A=A^*$, $B=B^*\in\mathcal L^2(\mathcal H)$ and B>0, then

$$\dot{A}_t = [A_t, [A_t, B]], \quad A_{t=0} = A,$$

- Problem: In general, A_{∞} is not close to A because of two reasons:
 - 1. Only A is changing, not B.
 - 2. $||A_t B||$ is monotonically decreasing.

Theorem (1, JG 25'+)

Let \mathcal{H} be a complex separable Hilbert space and $A, B \in \mathcal{L}^2(\mathcal{H})$ be two self-adjoint Hilbert-Schmidt operators. Then, the differential equation

$$\dot{A}_t = [B_t, [A_t, B_t]], \quad A_0 = A,$$
 $\dot{B}_t = [A_t, [B_t, A_t]], \quad B_0 = B,$
(2)

has a unique global solution $(A_t, B_t)_{t>0}$ that satisfies

$$\lim_{t\to\infty} \sqrt{t} \cdot [A_t, B_t] = 0. \tag{3}$$

Moreover, if $\dim(\mathcal{H}) = N < \infty$, then the solution converges for $t \to \infty$ in Hilbert-Schmidt norm $(A_t, B_t) \to (A_\infty, B_\infty)$ and is close to its initial value, i.e.,

$$\|A - A_{\infty}\|_{\mathcal{L}^{2}}^{2} + \|B - B_{\infty}\|_{\mathcal{L}^{2}}^{2} \le 4C(N)\|[A, B]\|_{\mathcal{L}^{2}} < 2N^{3}\|[A, B]\|_{\mathcal{L}^{2}}, \tag{4}$$

where $C(N) < N^3/2$ is the optimal constant of

$$||[D, E]||_{\mathcal{L}^2}^3 \leq C(N)(||[D, [D, E]]||_{\mathcal{L}^2}^2 + ||[E, [E, D]]||_{\mathcal{L}^2}^2), \ \forall D = D^*, E = E^* \in \mathcal{L}^2(\mathcal{H}).$$

- Local existence and uniqueness is clear.
- Norm of A_t and B_t is monotonically decreasing because of

$$\frac{\mathrm{d}}{\mathrm{d}t} \|A_t\|_{\mathcal{L}^2}^2 = 2\mathrm{Tr}(A_t \dot{A}_t) = 2\mathrm{Tr}(A_t [B_t, [A_t, B_t]])
= 2\mathrm{Tr}([A_t, B_t][A_t, B_t]) = -2\|[A_t, B_t]\|_{\mathcal{L}^2}^2 \le 0.$$

- With $f_t := \|[A_t, B_t]\|_{\mathcal{L}^2}^2/2$, we have $\dot{f}_t = -\|\dot{A}_t\|_{\mathcal{L}^2}^2 \|\dot{B}_t\|_{\mathcal{L}^2}^2 \le 0$ and $\frac{\mathrm{d}}{\mathrm{d}t}\|A_t\|_{\mathcal{L}^2}^2 = -4f_t$ and hence $\|A\|^2 \|A_T\|^2 = 4\int_0^T f_t \, \mathrm{d}t \le \|A\|^2$ for all T > 0. $\Rightarrow \lim_{t \to \infty} t \cdot f_t = 0 \Rightarrow \dot{f}_t \le C/t^2$.
- For convergence of A_t , B_t for $t \to \infty$ we need integrability of

$$||A_t - A_s|| + ||B_t - B_s|| \le \int_s^t (||\dot{A_\tau}|| + ||\dot{B_\tau}||) d\tau \le \int_s^t \sqrt{-2\dot{f_\tau}} d\tau.$$

Recall that for $f_t = \frac{\|[A_t, B_t]\|_{\mathcal{L}^2}^2}{2}$ we have $\dot{f}_t = -\|[A_t, [A_t, B_t]]\|_{\mathcal{L}^2}^2 - \|[B_t, [B_t, A_t]]\|_{\mathcal{L}^2}.$

■ Suppose there is $\gamma \geq 1$ and a constant $C < \infty$ such that for all self-adjoint A, B we have

$$||[A, B]||_{\mathcal{L}^2}^{2\gamma} \le C(||[A, [A, B]]||_{\mathcal{L}^2}^2 + ||[B, [B, A]]||_{\mathcal{L}^2}^2).$$
 (5)

- $\Rightarrow \dot{f}_t \leq -\frac{f_t^{\gamma}}{C}$ so f_t would be a subsolution to $\dot{g}_t = -\frac{g_t^{\gamma}}{C}$.
- $\Rightarrow f_t \leq C' \exp[-t] ext{ for } \gamma = 1 ext{ or } f_t \leq C' (1+t)^{-\frac{1}{\gamma-1}}.$
- \Rightarrow Sufficient decay if $\gamma \in [1, 2)$.

$$||[A, B]||_{\mathcal{L}^2}^4 \le ||B||_{\mathcal{L}^2}^2 ||[A, [A, B]]||_{\mathcal{L}^2}^2.$$

Section 2

Iterated Commutator Estimates

Consider inequalities of the form

$$||[A, B]||_{\mathcal{L}^2}^{2\gamma} \le C(N) \Big(||[A, [A, B]]||_{\mathcal{L}^2}^2 + ||[B, [B, A]]||_{\mathcal{L}^2}^2 \Big), \tag{6}$$

- In general, $\gamma = \frac{3}{2}$ is necessary, even for A, B self-adjoint.
- For all $N \ge 2$ and $C(N) < \infty$ there are diagonalizable $A, B \in \mathbb{C}^{N \times N}$ that violate (6).
- There are self-adjoint $A, B \in \mathbb{C}^{N \times N}$ saturating (6) with $C(N) = (N/4)^{3/2}$. These matrices also saturate (6) if $\|\cdot\|_{\mathcal{L}^2}$ is changed to $\|\cdot\|_{op}$ and $C(N) \sim \sqrt{N}$.

Theorem (2, JG 25'+)

$$||[A, B]||_{\mathcal{L}^2}^3 \le C(N) \cdot (||[A, [A, B]]||_{\mathcal{L}^2}^2 + ||[B, [A, B]]||_{\mathcal{L}^2}^2). \tag{7}$$

- If $A = A^*$ or $B = B^*$ has just two eigenvalues, i.e., $\sigma(A) = \{a_1, a_2\}$ then $C(N) \le \sqrt{N}/4$.
- With spectral gap $\Delta := \min\{|a-a'| : a \neq a' \in \sigma(A)\}$, one has $\|[A,B]\|_{\mathcal{L}^2}^2 \leq \frac{\|[A,[A,B]]\|_{\mathcal{L}^2}^2}{\Delta^2}$. \Rightarrow In this case $\dot{B}_t = [A,[B_t,A]]$ has a unique solution, $B_t \to B_\infty$ exponentially and $\|B_\infty B\|_{\mathcal{L}^2} \leq \frac{\|[A,B]\|_{\mathcal{L}^2}}{\Delta}$.