Magnetic Bernstein inequalities

Paul Pfeiffer, Matthias Täufer FernUniversität in Hagen

8th November 2024

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

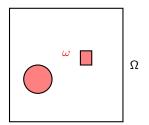
Motivation: Unique continuation

		6	5					
7		5			2	3		
	3						8	
	5			9	6		7	
1		4						8
			8	2				
	2						9	
		7	2			4		
					7	5		

Unique continuation

Unique continuation principle

A class \mathcal{F} of functions $f : \mathbb{R}^d \supset \Omega \rightarrow \mathbb{R}$ or \mathbb{C} has the **unique continuation principle** on $\omega \subset \Omega$ if functions in \mathcal{F} are uniquely determined by their values on ω .

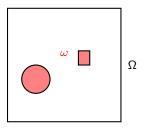


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Unique continuation

Unique continuation principle

A class \mathcal{F} of functions $f : \mathbb{R}^d \supset \Omega \rightarrow \mathbb{R}$ or \mathbb{C} has the **unique continuation principle** on $\omega \subset \Omega$ if functions in \mathcal{F} are uniquely determined by their values on ω .



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

analytic functions,

- entire holomorphic functions (identifying \mathbb{C} with \mathbb{R}^2),
- Solutions of many PDEs (Kovalevskaya 1874).

Quantitative unique continuation

A class $\mathcal{F} \subset L^p(\Omega)$ has a quantitative unique continuation principle on $\omega \subset \Omega^d$ if there is C > 0 such that

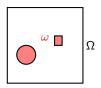
 $\|f\|_{L^{p}(\Omega)} \leq C \|f\|_{L^{p}(\omega)} \quad \text{for all } f \in \mathcal{F}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Quantitative unique continuation

A class $\mathcal{F} \subset L^p(\Omega)$ has a quantitative unique continuation principle on $\omega \subset \Omega^d$ if there is C > 0 such that

$$\|f\|_{L^p(\Omega)} \leq C \|f\|_{L^p(\omega)}$$
 for all $f \in \mathcal{F}$.



• If $\mathcal{F} \subset L^{p}(\Omega)$ vector space, this implies **unique continuation**:

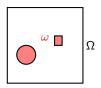
$$f-g\equiv 0 ext{ on } \omega \quad \Rightarrow \quad f-g\equiv 0 ext{ on } \Omega.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Quantitative unique continuation

A class $\mathcal{F} \subset L^p(\Omega)$ has a quantitative unique continuation principle on $\omega \subset \Omega^d$ if there is C > 0 such that

$$\|f\|_{L^p(\Omega)} \leq C \|f\|_{L^p(\omega)}$$
 for all $f \in \mathcal{F}$.



• If $\mathcal{F} \subset L^{p}(\Omega)$ vector space, this implies **unique continuation**:

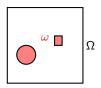
$$f-g\equiv 0 \text{ on } \omega \quad \Rightarrow \quad f-g\equiv 0 \text{ on } \Omega.$$

• Operator theoretic way to see this: The operator of multiplication with $\mathbf{1}_{\omega}$ has a bounded inverse on \mathcal{F} with $\|(\mathbf{1}_{\omega})\|_{Op}^{-1} \leq C$.

Quantitative unique continuation

A class $\mathcal{F} \subset L^p(\Omega)$ has a quantitative unique continuation principle on $\omega \subset \Omega^d$ if there is C > 0 such that

$$\|f\|_{L^p(\Omega)} \leq C \|f\|_{L^p(\omega)}$$
 for all $f \in \mathcal{F}$.



• If $\mathcal{F} \subset L^{p}(\Omega)$ vector space, this implies **unique continuation**:

$$f-g\equiv 0 \text{ on } \omega \quad \Rightarrow \quad f-g\equiv 0 \text{ on } \Omega.$$

• Operator theoretic way to see this: The operator of multiplication with $\mathbf{1}_{\omega}$ has a bounded inverse on \mathcal{F} with $\|(\mathbf{1}_{\omega})\|_{Op}^{-1} \leq C$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

ldeally, want to understand C in terms of \mathcal{F} , ω , Ω .

Spectral subspaces

H non-negative self-adjoint differential operator in $L^2(\mathbb{R}^d)$,

(ロ)、(型)、(E)、(E)、 E) の(()

Spectral subspaces

H non-negative self-adjoint differential operator in $L^2(\mathbb{R}^d)$,

Spectral subspace

The spectral subspace up to energy $E \ge 0$ with respect to H, Ran $\mathbf{1}_E(H)$, is the space of $f \in L^2(\mathbb{R}^d)$ such that $H^n f \in L^2(\mathbb{R}^d)$ for all $n \in \mathbb{N}$, and

 $\|Hf\|_{L^2(\mathbb{R}^d)} \leq E^n \|f\|_{L^2(\mathbb{R}^d)}$ for all $n \in \mathbb{N}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Spectral subspaces

H non-negative self-adjoint differential operator in $L^2(\mathbb{R}^d)$,

Spectral subspace

The spectral subspace up to energy $E \ge 0$ with respect to H, Ran $\mathbf{1}_E(H)$, is the space of $f \in L^2(\mathbb{R}^d)$ such that $H^n f \in L^2(\mathbb{R}^d)$ for all $n \in \mathbb{N}$, and

$$\|Hf\|_{L^2(\mathbb{R}^d)} \leq E^n \|f\|_{L^2(\mathbb{R}^d)}$$
 for all $n \in \mathbb{N}$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

If *H* has discrete spectrum, $\operatorname{Ran} \mathbf{1}_{E}(H)$ is the span of eigenfunctions with eigenvalues below *E*.

QUCP for spectral subspaces: applications in Mathematical Physics.

Important object in mathematical Physics e.g. for quantum Hall effect.

・ロト・(型ト・(三ト・(三ト))
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・</li

Important object in mathematical Physics e.g. for quantum Hall effect.

For Magnetic field strength B > 0, the Landau operator is

$$H_B := \left(i \nabla + \frac{B}{2} \begin{pmatrix} -x_2 \\ x_1 \end{pmatrix}
ight)^2$$
 in $L^2(\mathbb{R}^2)$.

Important object in mathematical Physics e.g. for quantum Hall effect.

For Magnetic field strength B > 0, the Landau operator is

$$H_B := \left(i \nabla + \frac{B}{2} \begin{pmatrix} -x_2 \\ x_1 \end{pmatrix}
ight)^2$$
 in $L^2(\mathbb{R}^2)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

> 2*d* electron, subject to a perpendicular magnetic field in x_3 direction.

Important object in mathematical Physics e.g. for quantum Hall effect.

For Magnetic field strength B > 0, the Landau operator is

$$H_B := \left(i \nabla + \frac{B}{2} \begin{pmatrix} -x_2 \\ x_1 \end{pmatrix}
ight)^2$$
 in $L^2(\mathbb{R}^2)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

2d electron, subject to a perpendicular magnetic field in x₃ direction.
 Spectrum σ(H_B) = {B, 3B,...} with ∞ degenerate eigenvalues.

Important object in mathematical Physics e.g. for quantum Hall effect.

For Magnetic field strength B > 0, the Landau operator is

$$H_B := \left(i \nabla + \frac{B}{2} \begin{pmatrix} -x_2 \\ x_1 \end{pmatrix}
ight)^2$$
 in $L^2(\mathbb{R}^2)$.

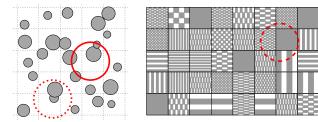
> 2*d* electron, subject to a perpendicular magnetic field in x_3 direction.

Spectrum $\sigma(H_B) = \{B, 3B, ...\}$ with ∞ degenerate eigenvalues.

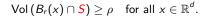
Using a method called Periodicity, one has:

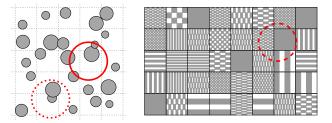
Theorem (Combes, Hislop, Klopp, Raikov) Let B, E > 0 and $S \subset \mathbb{R}^2$ be non-empty, open and periodic (+ technical assumptions). Then, there is C = C(B, E, S) such that for all $f \in \operatorname{Ran} \chi_{(-\infty, E]}(H_B)$ $\|f\|_{L^2(\mathbb{R}^2)}^2 \leq C \|f\|_{L^2(S)}^2$. Interlude: Thick sets

 $\operatorname{Vol}(B_r(x) \cap S) \ge \rho$ for all $x \in \mathbb{R}^d$.



Interlude: Thick sets





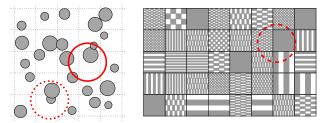
▶ Thick sets can be rather wild (e.g. fractal, non-empty interior).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Also called relatively dense.

Interlude: Thick sets

Vol $(B_r(x) \cap S) \ge \rho$ for all $x \in \mathbb{R}^d$.



- Thick sets can be rather wild (e.g. fractal, non-empty interior).
- Also called relatively dense.
- Minimal criterion for quantitative quantitative unique continuation for functions with bounded Fourier support.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

QUCP for the Landau operator in 2 dimensions

Theorem (Pfeiffer, Täufer, 23) Let $S \subset \mathbb{R}^2$ be (r, ρ) -thick. Then, there is $C = C(\rho) > 0$ such that for all E > 0 and all $f \in \text{Ran } \chi_{(-\infty, E]}(H_B)$

$$\|f\|_{L^{2}(\mathbb{R}^{2})}^{2} \leq C \exp\left(C\sqrt{E}r + CBr^{2}\right)\|f\|_{L^{2}(S)}^{2}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

QUCP for the Landau operator in 2 dimensions

Theorem (Pfeiffer, Täufer, 23) Let $S \subset \mathbb{R}^2$ be (r, ρ) -thick. Then, there is $C = C(\rho) > 0$ such that for all E > 0 and all $f \in \text{Ran } \chi_{(-\infty, E]}(H_B)$

$$\|f\|_{L^2(\mathbb{R}^2)}^2 \leq C \exp\left(C\sqrt{E}r + CBr^2\right) \|f\|_{L^2(S)}^2.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- + Explicit (and optimal) in E, B, r.
- + Optimal (= minimal) assumption on geometry.

Theorem (Pfeiffer, Täufer, 23) Let $S \subset \mathbb{R}^2$ be (r, ρ) -thick. Then, there is $C = C(\rho) > 0$ such that for all E > 0 and all $f \in \text{Ran } \chi_{(-\infty, E]}(H_B)$

$$\|f\|_{L^2(\mathbb{R}^2)}^2 \leq C \exp\left(C\sqrt{E}r + CBr^2\right) \|f\|_{L^2(S)}^2.$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

- + Explicit (and optimal) in E, B, r.
- + Optimal (= minimal) assumption on geometry.
- Method only really works for very specific, explicit Hamiltonians.

We follow the Logvinenko-Sereda strategy and first need to prove something similar to Paley Wiener. Need **Bernstein inequalities**.

$$\|\partial^{\alpha}f\|_{L^2(\mathbb{R}^2)}^2 \leq E^n \|f\|_{L^2(\mathbb{R}^2)}^2 \quad \text{for } \alpha \in \{1,2\}^n, \ f \in \mathsf{Ran}\,\mathbf{1}_E(H_B).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

We follow the Logvinenko-Sereda strategy and first need to prove something similar to Paley Wiener. Need **Bernstein inequalities**.

$$\|\partial^{\alpha}f\|_{L^{2}(\mathbb{R}^{2})}^{2} \leq E^{n}\|f\|_{L^{2}(\mathbb{R}^{2})}^{2} \quad \text{for } \alpha \in \{1,2\}^{n}, \ f \in \operatorname{Ran} \mathbf{1}_{E}(H_{B}).$$

Bad news

For all $n \in \mathbb{N}$, and $\alpha \in \{1,2\}^n$, we can find $f \in \operatorname{Ran} \mathbf{1}_E(H_B)$ with

$$\|\partial^{\alpha}f\|_{L^{2}(\mathbb{R}^{2})}^{2} \gg \|f\|_{L^{2}(\mathbb{R}^{2})}^{2} \quad (\cong)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We follow the Logvinenko-Sereda strategy and first need to prove something similar to Paley Wiener. Need **Bernstein inequalities**.

$$\|\partial^{\alpha}f\|_{L^2(\mathbb{R}^2)}^2 \leq E^n \|f\|_{L^2(\mathbb{R}^2)}^2 \quad \text{for } \alpha \in \{1,2\}^n, \ f \in \mathsf{Ran}\,\mathbf{1}_E(H_B).$$

Bad news

For all $n \in \mathbb{N}$, and $\alpha \in \{1,2\}^n$, we can find $f \in \operatorname{Ran} \mathbf{1}_E(H_B)$ with

$$\|\partial^{\alpha}f\|_{L^{2}(\mathbb{R}^{2})}^{2} \gg \|f\|_{L^{2}(\mathbb{R}^{2})}^{2} \quad (:)$$

New idea: H_B has a similar structure as $-\Delta = -\partial_1^2 - \partial_2^2$:

$$H_B = \tilde{\partial}_1^2 + \tilde{\partial}_2^2$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

for the covariant derivatives $\tilde{\partial}_1 = i\partial_1 + \frac{B}{2}x_2$, $\tilde{\partial}_2 = i\partial_2 - \frac{B}{2}x_1$.

We follow the Logvinenko-Sereda strategy and first need to prove something similar to Paley Wiener. Need **Bernstein inequalities**.

$$\|\partial^{\alpha} f\|_{L^{2}(\mathbb{R}^{2})}^{2} \leq E^{n} \|f\|_{L^{2}(\mathbb{R}^{2})}^{2} \quad \text{for } \alpha \in \{1,2\}^{n}, \ f \in \mathsf{Ran} \, \mathbf{1}_{E}(H_{B}).$$

Bad news

For all $n \in \mathbb{N}$, and $\alpha \in \{1,2\}^n$, we can find $f \in \operatorname{Ran} \mathbf{1}_E(H_B)$ with

$$\|\partial^{\alpha}f\|_{L^{2}(\mathbb{R}^{2})}^{2} \gg \|f\|_{L^{2}(\mathbb{R}^{2})}^{2} \quad (:)$$

New idea: H_B has a similar structure as $-\Delta = -\partial_1^2 - \partial_2^2$:

$$H_B = \tilde{\partial}_1^2 + \tilde{\partial}_2^2$$

for the **covariant derivatives** $\tilde{\partial}_1 = i\partial_1 + \frac{B}{2}x_2$, $\tilde{\partial}_2 = i\partial_2 - \frac{B}{2}x_1$. (\Box) New problem: Magnetic derivative no longer commute.

$$\tilde{\partial}_1 \tilde{\partial}_2 - \tilde{\partial}_2 \tilde{\partial}_1 = i B \operatorname{Id}$$
.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

To prove Paley-Wiener, one can use

$$\sum_{\in \{1,...,d\}^n} (\partial^lpha)^* \partial^lpha f = (-\Delta)^n$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

 $\alpha \in \{1,...,d\}^n$ This works because ordinary derivatives commute.

If we try this with **magnetic derivatives** $\tilde{\partial}_1$, $\tilde{\partial}_2$, we will obtain a lot of commutators and be very confused.

To prove Paley-Wiener, one can use

$$\sum_{\in \{1,...,d\}^n} (\partial^lpha)^* \partial^lpha f = (-\Delta)^n$$

 $\alpha \in \{1,...,d\}^n$ This works because ordinary derivatives commute.

If we try this with **magnetic derivatives** $\tilde{\partial}_1$, $\tilde{\partial}_2$, we will obtain a lot of commutators and be very confused.

"Miracle"

For the magnetic derivatives, we still have that

$$\sum_{\alpha \in \{1,2\}^n} (\tilde{\partial}^{\alpha})^* \tilde{\partial}^{\alpha} = P_n(H_B)$$

where P_n is a polynomial of *n*-th order satisfying $P_n(t) \leq (t + Bn)^n$. \bigcirc

With this, we can prove magnetic Bernstein inequalities

Theorem (Täufer, Pfeiffer 23)

For all B > 0, E > 0, $n \in \mathbb{N}$, we have

$$\sum_{\alpha\in\{1,2\}^n}\|\tilde{\partial}^\alpha f\|_{L^2(\mathbb{R}^2)}\leq (E+Bn)^n\|f\|_{L^2(\mathbb{R}^2)}\quad\text{for all }f\in\mathbf{1}_E(H_B).$$

We are happier :, but need **ordinary derivatives** for the Taylor series and Bernstein does not hold for them :.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

With this, we can prove magnetic Bernstein inequalities

Theorem (Täufer, Pfeiffer 23)

For all B > 0, E > 0, $n \in \mathbb{N}$, we have

$$\sum_{\alpha\in\{1,2\}^n}\|\tilde\partial^\alpha f\|_{L^2(\mathbb{R}^2)}\leq (E+Bn)^n\|f\|_{L^2(\mathbb{R}^2)}\quad\text{for all }f\in\mathbf{1}_E(H_B).$$

We are happier :, but need **ordinary derivatives** for the Taylor series and Bernstein does not hold for them :. Solution: Go from $\|\partial^{\alpha} f\|_{L^{2}(\mathbb{R}^{2})}$ to $\|\partial^{\alpha} |f|^{2}\|_{L^{1}(\mathbb{R}^{2})}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

With this, we can prove magnetic Bernstein inequalities

Theorem (Täufer, Pfeiffer 23)

For all B > 0, E > 0, $n \in \mathbb{N}$, we have

$$\sum_{\alpha\in\{1,2\}^n}\|\tilde\partial^\alpha f\|_{L^2(\mathbb{R}^2)}\leq (E+Bn)^n\|f\|_{L^2(\mathbb{R}^2)}\quad\text{for all }f\in\mathbf{1}_E(H_B).$$

We are happier :, but need **ordinary derivatives** for the Taylor series and Bernstein does not hold for them :. Solution: Go from $\|\partial^{\alpha} f\|_{L^{2}(\mathbb{R}^{2})}$ to $\|\partial^{\alpha} |f|^{2}\|_{L^{1}(\mathbb{R}^{2})}$.

Theorem (Täufer, Pfeiffer 23)

For all B > 0, E > 0, $n \in \mathbb{N}$, we have

$$\sum_{\alpha \in \{1,2\}^n} \|\partial^{\alpha} |f|^2\|_{L^1(\mathbb{R}^2)} \leq 4^n (E + Bn)^{n/2} \|f\|_{L^2(\mathbb{R}^2)} \quad \text{for all } f \in \mathbf{1}_E(H_B).$$

With this, we can prove magnetic Bernstein inequalities

Theorem (Täufer, Pfeiffer 23)

For all B > 0, E > 0, $n \in \mathbb{N}$, we have

$$\sum_{\alpha\in\{1,2\}^n}\|\tilde\partial^\alpha f\|_{L^2(\mathbb{R}^2)}\leq (E+Bn)^n\|f\|_{L^2(\mathbb{R}^2)}\quad\text{for all }f\in\mathbf{1}_E(H_B).$$

We are happier :, but need **ordinary derivatives** for the Taylor series and Bernstein does not hold for them :. Solution: Go from $\|\partial^{\alpha} f\|_{L^{2}(\mathbb{R}^{2})}$ to $\|\partial^{\alpha} |f|^{2}\|_{L^{1}(\mathbb{R}^{2})}$.

Theorem (Täufer, Pfeiffer 23)

For all B > 0, E > 0, $n \in \mathbb{N}$, we have

 $\sum_{\alpha \in \{1,2\}^n} \|\partial^{\alpha} |f|^2\|_{L^1(\mathbb{R}^2)} \leq 4^n (E + Bn)^{n/2} \|f\|_{L^2(\mathbb{R}^2)} \quad \text{for all } f \in \mathbf{1}_E(H_B).$

Now, $4^n(E + Bn)^{n/2} \sim \sqrt{n!}$ still loses against n! in Taylor series, which is needed for some complex analysis black magic known as Logvinenko-Sereda theorem \bigcirc

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・