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Motivation: Unique continuation
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Unique continuation

Unique continuation principle

A class F of functions f: R? 5 Q@ — R or C has the unique continuation
principle on w C Q if functions in F are uniquely determined by their values on
w.
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» analytic functions,
> entire holomorphic functions (identifying C with R?),
> Solutions of many PDEs (Kovalevskaya 1874).



Quantitative unique continuation

Quantitative unique continuation

A class F C LP(2) has a quantitative unique continuation principle on
w C Q% if there is C > 0 such that

Hf”Lp(Q) < CHf”LP(w) for all f € F.

UJD Q

o




Quantitative unique continuation

Quantitative unique continuation

A class F C LP(2) has a quantitative unique continuation principle on
w C Q% if there is C > 0 such that

Hf”LP(Q) < CHf”LP(w) forall f € F.

UJD Q

o

> If F C LP(Q2) vector space, this implies unique continuation:

f—-g=0onw = f—g=0onq.



Quantitative unique continuation

Quantitative unique continuation

A class F C LP(2) has a quantitative unique continuation principle on
w C Q% if there is C > 0 such that

Ifllee@) < Cllfllipwy forall f € F.

o

> If F C LP(Q2) vector space, this implies unique continuation:

f-g=0onw = f—-—g=0on.

» Operator theoretic way to see this: The operator of multiplication with 1,,
has a bounded inverse on F with ||(1. )||Op< C.



Quantitative unique continuation

Quantitative unique continuation

A class F C LP(2) has a quantitative unique continuation principle on
w C Q% if there is C > 0 such that

Ifllee@) < Cllfllipwy forall f € F.

o

> If F C LP(Q2) vector space, this implies unique continuation:

f—-g=0onw = f—g=0onq.

» Operator theoretic way to see this: The operator of multiplication with 1,,
has a bounded inverse on F with ||(1. )||Op< C.

» |deally, want to understand C in terms of F, w, Q.
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H non-negative self-adjoint differential operator in [*(R?),

Spectral subspace

The spectral subspace up to energy E > 0 with respect to H, Ran 1g(H), is
the space of f € L?(R?) such that H"f € L?(R9) for all n € N, and

HHf—”LZ(]Rd) < En”fHLZ(Rd) for all n € N.

If H has discrete spectrum, Ran 1g(H) is the span of eigenfunctions with
eigenvalues below E.

QUCP for spectral subspaces: applications in Mathematical Physics.
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Landau operator

Important object in mathematical Physics e.g. for quantum Hall effect.

» For Magnetic field strength B > 0, the Landau operator is
Hom (0 B(72)) in L3(R?)
- 2\ x1 '

» 2d electron, subject to a perpendicular magnetic field in x3 direction.
» Spectrum o(Hg) = {B, 3B, ...} with co degenerate eigenvalues.

Using a method called Periodicity, one has:

Theorem (Combes, Hislop, Klopp, Raikov)
Let B,E >0 and S C R? be non-empty, open and periodic (+ technical
assumptions). Then, there is C = C(B, E, S) such that for all
f € Ran X(foo,E](HB)
I£1I2gz2y < ClIflIZ2(s)-



Interlude: Thick sets

Vol (B,(x)N'S) > p forall x € RY.
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Interlude: Thick sets

Vol (B,(x)N'S) > p forall x € RY.

» Thick sets can be rather wild (e.g. fractal, non-empty interior).
» Also called relatively dense.

» Minimal criterion for quantitative quantitative unique continuation for
functions with bounded Fourier support.



QUCP for the Landau operator in 2 dimensions

Theorem (Pfeiffer, Taufer, 23)

Let S C R? be (r,p)-thick. Then, there is C = C(p) > 0 such that for all
E >0 and all f € Ran x(_oo,£](H5)

122y < Cexp (CVEr + CBP) I flltxs).
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QUCP for the Landau operator in 2 dimensions

Theorem (Pfeiffer, Taufer, 23)

Let S C R? be (r,p)-thick. Then, there is C = C(p) > 0 such that for all
E >0 and all f € Ran x(_oo,£](H5)

122y < Cexp (CVEr + CBP) I flltxs).
+ Explicit (and optimal) in E, B, r.

+ Optimal (= minimal) assumption on geometry.

— Method only really works for very specific, explicit Hamiltonians.



Proof of QUCP Landau (1)

We follow the Logvinenko-Sereda strategy and first need to prove something
similar to Paley Wiener. Need Bernstein inequalities.

[0°F 72wy < E"lIfll32g2) for @ € {1,2}", f € Ran 1£(Hs).
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Proof of QUCP Landau (1)

We follow the Logvinenko-Sereda strategy and first need to prove something
similar to Paley Wiener. Need Bernstein inequalities.

[0°F 72wy < E"lIfll32g2) for @ € {1,2}", f € Ran 1£(Hs).

Bad news
Forall n € N, and a € {1,2}", we can find f € Ran1g(Hg) with

||8af|ﬁ2(R2) > Hf”iZ(RZ) @

New idea: Hg has a similar structure as —A = —9? — 92:

Hg = 0; + 0
for the covariant derivatives ; = id1 + Exs, 8, = i9h — Ex1. (©)
New problem: Magnetic derivative no longer commute.

6.8, — 8,6, = iBId.



Proof of QUCP Landau (2)

To prove Paley-Wiener, one can use
Z (8a)*8af:(_A)n

This works because ordinary derivatives commute.

If we try this with magnetic derivatives d;, 9, we will obtain a lot of
commutators and be very confused.
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To prove Paley-Wiener, one can use
Z (8a)*8af:(_A)n

This works because ordinary derivatives commute.

If we try this with magnetic derivatives d;, 9, we will obtain a lot of
commutators and be very confused.

"Miracle”
For the magnetic derivatives, we still have that

S (3°)°5° = Pu(Ha)

a€{1,2}"

where P, is a polynomial of n-th order satisfying Pn(t) < (t + Bn)". @
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Proof of QUCP Landau (3)

With this, we can prove magnetic Bernstein inequalities
Theorem (Taufer, Pfeiffer 23)
Forall B> 0, E >0, n€ N, we have
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Theorem (Taufer, Pfeiffer 23)

Forall B> 0, E >0, n€ N, we have

> 10%1FPllixrey < 4"(E + Bn)"?|[f||2zey for all £ € 1(Hs).
ae{1,2}"

Now, 4"(E + Bn)"/2 ~ /n! still loses against n! in Taylor series, which is
needed for some complex analysis black magic known as Logvinenko-Sereda
theorem @ O



