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Motivation: Unique continuation



Unique continuation

Unique continuation principle

A class F of functions f : Rd ⊃ Ω→ R or C has the unique continuation
principle on ω ⊂ Ω if functions in F are uniquely determined by their values on
ω.

Ω
ω

I analytic functions,

I entire holomorphic functions (identifying C with R2),

I Solutions of many PDEs (Kovalevskaya 1874).
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Quantitative unique continuation

Quantitative unique continuation

A class F ⊂ Lp(Ω) has a quantitative unique continuation principle on
ω ⊂ Ωd if there is C > 0 such that

‖f ‖Lp(Ω) ≤ C‖f ‖Lp(ω) for all f ∈ F .

Ω
ω

I If F ⊂ Lp(Ω) vector space, this implies unique continuation:

f − g ≡ 0 on ω ⇒ f − g ≡ 0 on Ω.

I Operator theoretic way to see this: The operator of multiplication with 1ω
has a bounded inverse on F with ‖(1ω)‖−1

Op≤ C .

I Ideally, want to understand C in terms of F , ω, Ω.
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Spectral subspaces

H non-negative self-adjoint differential operator in L2(Rd),

Spectral subspace

The spectral subspace up to energy E ≥ 0 with respect to H, Ran 1E (H), is
the space of f ∈ L2(Rd) such that Hnf ∈ L2(Rd) for all n ∈ N, and

‖Hf ‖L2(Rd ) ≤ E n‖f ‖L2(Rd ) for all n ∈ N.

If H has discrete spectrum, Ran 1E (H) is the span of eigenfunctions with
eigenvalues below E .

QUCP for spectral subspaces: applications in Mathematical Physics.
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Landau operator

Important object in mathematical Physics e.g. for quantum Hall effect.

I For Magnetic field strength B > 0, the Landau operator is

HB :=

(
i∇+

B

2

(
−x2

x1

))2

in L2(R2).

I 2d electron, subject to a perpendicular magnetic field in x3 direction.

I Spectrum σ(HB) = {B, 3B, . . . } with ∞ degenerate eigenvalues.

Using a method called Periodicity, one has:

Theorem (Combes, Hislop, Klopp, Raikov)

Let B,E > 0 and S ⊂ R2 be non-empty, open and periodic (+ technical
assumptions). Then, there is C = C(B,E ,S) such that for all
f ∈ Ranχ(−∞,E ](HB)

‖f ‖2
L2(R2) ≤ C‖f ‖2

L2(S).
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Interlude: Thick sets

Vol (Br (x) ∩ S) ≥ ρ for all x ∈ Rd .

I Thick sets can be rather wild (e.g. fractal, non-empty interior).

I Also called relatively dense.

I Minimal criterion for quantitative quantitative unique continuation for
functions with bounded Fourier support.
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QUCP for the Landau operator in 2 dimensions

Theorem (Pfeiffer, Täufer, 23)

Let S ⊂ R2 be (r , ρ)-thick. Then, there is C = C(ρ) > 0 such that for all
E > 0 and all f ∈ Ranχ(−∞,E ](HB)

‖f ‖2
L2(R2) ≤ C exp

(
C
√
Er + CBr 2

)
‖f ‖2

L2(S).

+ Explicit (and optimal) in E ,B, r .

+ Optimal (= minimal) assumption on geometry.

− Method only really works for very specific, explicit Hamiltonians.
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Proof of QUCP Landau (1)

We follow the Logvinenko-Sereda strategy and first need to prove something
similar to Paley Wiener. Need Bernstein inequalities.

‖∂αf ‖2
L2(R2) ≤ E n‖f ‖2

L2(R2) for α ∈ {1, 2}n, f ∈ Ran 1E (HB).

Bad news
For all n ∈ N, and α ∈ {1, 2}n, we can find f ∈ Ran 1E (HB) with

‖∂αf ‖2
L2(R2) � ‖f ‖

2
L2(R2)

New idea: HB has a similar structure as −∆ = −∂2
1 − ∂2

2 :

HB = ∂̃2
1 + ∂̃2

2

for the covariant derivatives ∂̃1 = i∂1 + B
2
x2, ∂̃2 = i∂2 − B

2
x1.

New problem: Magnetic derivative no longer commute.

∂̃1∂̃2 − ∂̃2∂̃1 = iB Id .
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Proof of QUCP Landau (2)

To prove Paley-Wiener, one can use∑
α∈{1,...,d}n

(∂α)∗∂αf = (−∆)n

This works because ordinary derivatives commute.

If we try this with magnetic derivatives ∂̃1, ∂̃2, we will obtain a lot of
commutators and be very confused.

”Miracle”
For the magnetic derivatives, we still have that∑

α∈{1,2}n
(∂̃α)∗∂̃α = Pn(HB)

where Pn is a polynomial of n-th order satisfying Pn(t) ≤ (t + Bn)n.
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Proof of QUCP Landau (3)

With this, we can prove magnetic Bernstein inequalities

Theorem (Täufer, Pfeiffer 23)

For all B > 0, E > 0, n ∈ N, we have∑
α∈{1,2}n

‖∂̃αf ‖L2(R2) ≤ (E + Bn)n‖f ‖L2(R2) for all f ∈ 1E (HB).

We are happier , but need ordinary derivatives for the Taylor series and

Bernstein does not hold for them .

Solution: Go from ‖∂αf ‖L2(R2) to

‖∂α|f |2‖L1(R2).

Theorem (Täufer, Pfeiffer 23)

For all B > 0, E > 0, n ∈ N, we have∑
α∈{1,2}n

‖∂α|f |2‖L1(R2) ≤ 4n(E + Bn)n/2‖f ‖L2(R2) for all f ∈ 1E (HB).

Now, 4n(E + Bn)n/2 ∼
√
n! still loses against n! in Taylor series, which is

needed for some complex analysis black magic known as Logvinenko-Sereda
theorem



Proof of QUCP Landau (3)

With this, we can prove magnetic Bernstein inequalities
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