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General idea

N-body bosonic system with Hamiltonian HN on L2
sym(RdN ),

Micro → meso/macro description, u ∈ L2(Rd)

Ground State : inf
ΨN∈L2

sym(RdN ),

∥ΨN∥=1

⟨ΨN |HNΨN ⟩ → N inf
u∈L2(Rd),
∥u∥=1

E [u]

Dynamics : i∂tΨN (t) = HNΨN (t) → i∂tu(t) = Hu(t)

Bose-Einstein condensate ΨN ≃ ⊗N
j=1uj ≃ GS :

HNΨN = EΨN → ΨN (t) = e−iEtΨN (0)

Heisenberg motion for ΓN (t) = |ΨN (t)⟩ ⟨ΨN (t)|

i∂tΓN (t) = [HN ,ΓN (t)]

Reduced density matices γ
(k)
N = Trk+1→N [ΓN ] ≃ |u⟩ ⟨u|⊗k
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The Anyon Gas

Leinaas and Myrheim (1997), anyons are 2D particles s.t :

Ψ̃(x1, ..., xj , ..., xk, ..., xN ) = eiαπΨ̃(x1, ..., xk, ..., xj , ..., xN )

Magnetic gauge picture with Ψ a bosonic wave function.

HN,R =

N∑
j=1

(−i∇j + αAR(xj))
2. (1)

Hamiltonian for N extended anyons of radius R where

A(x1) =
∑
k ̸=1

(x1 − xk)
⊥

|x1 − xk|2
, B(x1) = ∇×A = 2π

∑
k ̸=j

δ(x1 − xk) (2)

Anyons carry an Aharonov-Bohm magnetic flux of strength α.
Almost-bosonic limit: α = β(N − 1)−1 and HN,R acts on L2

sym(R2N ).
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Average-field limit

Hamiltonian for N trapped almost-bosonic extended anyons:

HR,N =

N∑
j=1

(−i∇j)
2 + V (xj) “Kinetic and potential terms"

+ α
∑
j ̸=k

(
−i∇j .∇⊥wR(xj − xk) + h.c

)
“Mixed"

+ α2
∑

j ̸=k ̸=ℓ

∇⊥wR(xj − xk).∇⊥wR(xj − xℓ) “Three-body"

+ α2
∑
j ̸=k

|∇⊥wR(xj − xk)|2 “Singular two-body".

The average-field energy, Lundholm, Rougerie (2016), G (2021)

inf
HN,R

N
→ inf Eaf

R [u] := inf

∫
R2

|(−i∇+ βAR[|u|2])u|2 + V |u|2 (3)

where AR[|u|2] := ∇⊥wR ∗ |u|2 and R > 1/
√
N .
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The effective equation

What equation should drive u(x, t) ?

BBGKY with γ
(k)
N (t) = |u(t)⟩ ⟨u(t)|⊗k.

Definition (Chern–Simons–Schrödinger equation)

We denote by CSS(R, u0) the differential problem whose the unknown
is u : (R+ × R2) 7→ C satisfying

i∂tu =
(
−i∇+ βAR

[
|u|2

])2
u

− β
[
∇⊥wR ∗

(
2βAR

[
|u|2

]
|u|2 + i (u∇u− u∇u)

)]
u (4)

with initial condition u(0, x) = u0(x) ∈ H2(R2).

There exists a T > 0 such that u(t) ∈ C([0, T ], H2(R2)).
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The result

Theorem (Convergence to CSS, J.Lee, G (2024))

Let φt be the solution of CSS(φ0) with initial data φ0 ∈ H2(R2).
Take R = (logN)−

1
2
+ε and ΨN (0) = φ⊗N

0 . Then, there exist constants
T,C, c > 0 depending on ∥φ0∥H2 such that for any |β| ≤ c and for all
time 0 ≤ t ≤ T , we have, for sufficiently large N ,

Tr
∣∣∣γ(k)N (t)−

∣∣∣φ⊗k
t

〉〈
φ⊗k
t

∣∣∣∣∣∣ ≤ C(logN)−
1
2
+ε (5)

∀k and for any choice of ε > 0.

Could be global in time but
∥∥φR

t

∥∥
H2 ≤ R−Ct → |β| ≤ c

If g > 0, CSS is globally well-posed in Hs, s ≥ 1

One and a half step to get a polynomial rate R ≃ N−δ, δ > 0

Eq. (5) valid with polynomial decay if R is kept fix
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Outline of the proof

Let φ(t) be solution of CSS(R,φ0) and define

p1(t) := |φt(x1)⟩⟨φt(x1)| and q1(t) := 1L2(R2) − p1(t). (6)

We have to control
N+(t) := ⟨ΨN |q1(t)ΨN ⟩ (7)

We can compute

∂tN+(t) = −i

〈
ΨN (t)

∣∣∣∣∣∣
HN,R −

N∑
j=1

H(xj), q1

ΨN (t)

〉
(8)

where the Hartree Hamiltonian is

H(x) :=
(
−i∇+ βAR

[
|φt|2

])2
(x)

− β
[
∇⊥wR ∗

(
2βAR

[
|φt|2

]
|φt|2 + i (φt∇φt − φt∇φt)

)]
(x).
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The mean-field cancellation

We split the space as

1L2(R4) = (p1 + q1)(p2 + q2) (9)

∂tN+(t) = −i ⟨p1p2|· · · , q1p2⟩ΨN
− i ⟨p1p2|· · · , q1q2⟩ΨN

− i ⟨q1p2|· · · , q1q2⟩ΨN

p2p3HN,Rp3p2 −H(x1)p2p3 ≃ small (10)

For instance, we have

p2∇1·∇⊥wR(x1−x2)p2 = ∇1·⟨φ(t)|wR(x1 − ·)φ(t)⟩ p2 = ∇1·AR[ρ]p2

In the others, we have many q ≃ N+ to close the Grönwall.
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Control of the kinetic energy

How to bound
〈
q1p2

∣∣∇1 ·AR[ρ], q1q2
〉
ΨN

?

We need to control q1∆1q1:

∥∇1q1ΨN∥2 ≤
√

N+ +
1

N

∣∣∣⟨ΨM (t)|HR,NΨN (t)⟩ − Eaf
R [φ(t)]

∣∣∣ (11)

If we do a Grönwall on
√
N+,

i∂t
√
N+ ≤ C∥φ(t)∥H2

√
N+ + ∥∇1q1ΨN∥2 + 1

N
.

Control on our operators ∇⊥wR ≃ |x|−1, via

(∇1 · ∇⊥wR(x1 − x2) + h.c)2 ≤ | logR|2(1−∆1)(1−∆2)

∇⊥wR(x1 − x2) · ∇⊥wR(x1 − x3) ≤ (1−∆1)
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Technical realization of N p
+

Split the space 1L2(R2N ) = (p1 + q1)(p2 + q2) · · · (pN + qN ),

P
(k)
N collects all summands containing k factors of q operators.

P
(k)
N :=

∑
a∈{0,1}N∑

j aj=k

N∏
j=1

p
1−aj
j q

aj
j . (12)

∑+∞
k=0 P

(k)
N = 1L2(R2N ), P

(k)
N P

(l)
N = δklP

(k)
N , P (0)

N = p⊗N .
Define

m̂(ξ) :=
N∑
k=1

(
k

N

)ξ

P
(k)
N , m̂(1) = N+, m̂(1/2) =

√
N+. (13)

Properties m̂(1/2)m̂(1/2) = m̂(1), m̂(n)(1/2) ≤ n
N m̂(−1/2).
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Thank you for your attention
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