Jacobs University
Fall 2018

Advanced Calculus

Homework 8

Due on November 19, 2018

Problem 1 [3 points]
Compute the integrals
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Problem 2 [3 points]

Compute the following improper integrals, in case they exist.
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Problem 3 [4 points]

November 12, 2018

Let R(z) be a rational function. Then integrals of the form [ R(sinz, cosz, tan z)dz can

be solved by using substitution.

(a) One can start by replacing sinz = —2%;. What is then the substitution for cosz and

14+y2? -
tan x?

(b) Use this substitution to calculate
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Problem 4 [4 points]
It is known that the Fresnel integral

is not elementary.

(a)
(b)

Express f(x) as a power series.

Show that the improper integral
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converges. (Note: This problem is independent of part (a).)

Problem 5 [6 points]

(a)

The gamma function is defined by

['(x) = / t" et dt.
0
Prove that I'(n) = (n — 1)! for all natural numbers n > 1.

In order to calculate integrals of the form fab e @) dx one can use Laplace’s method.
Assume f has a unique maximum z,, € (a,b) and that f is twice (continuously)
differentiable with f”(x,,) < 0. Then,
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i.e., for very large n,
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Derive the latter formula in a non-rigorous way using a Taylor expansion to second
order and just assuming that the remainder term behaves nicely. (You may use the
fact that [ e dz = \/7.)

Use the results from part a) and b) to derive (in a non-rigorous way) Stirling’s

approximation
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Bonus Problem [3 extra points]
Note: The bonus problems go a bit beyond what is covered in class, and problems like that
will not be posed in the exams.
In Homework 6 we studied convexity a bit closer and derived Jensen’s inequality. Now,
using convexity of —In, one can prove Young’s inequality for products. It states that for
positive real x,y and p, ¢ with % + é =1,
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With that inequality at hand, one can prove the following generalization of the Cauchy-
Schwarz inequality. For positive p, ¢ with }D + % =1,
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This is called Holder’s inequality. Prove these two inequalities.
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