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Problem 1 [3 points]

Compute the integrals

(a) ∫
2x

x2 + x− 12
dx,

(b) ∫
2x3 − 4x2 + x− 1

x3 − 4x2 + 5x− 2
dx.

Problem 2 [3 points]

Compute the following improper integrals, in case they exist.

(a) ∫ ∞
0

e−λx dx, (λ ∈ R)

(b) ∫ ∞
−∞

x

(x2 + λ2)2
dx, (λ ∈ R)

(c) ∫ 1

0

x√
1− x2

dx.

Problem 3 [4 points]

Let R(x) be a rational function. Then integrals of the form
∫
R(sinx, cosx, tanx)dx can

be solved by using substitution.

(a) One can start by replacing sinx = 2y
1+y2

. What is then the substitution for cosx and
tanx?

(b) Use this substitution to calculate ∫
1

2 + sin x
dx.
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Problem 4 [4 points]

It is known that the Fresnel integral

f(x) =

∫ x

0

cos(t2)dt

is not elementary.

(a) Express f(x) as a power series.

(b) Show that the improper integral ∫ ∞
0

cos(t2)dt

converges. (Note: This problem is independent of part (a).)

Problem 5 [6 points]

(a) The gamma function is defined by

Γ(x) =

∫ ∞
0

tx−1e−t dt.

Prove that Γ(n) = (n− 1)! for all natural numbers n ≥ 1.

(b) In order to calculate integrals of the form
∫ b
a
enf(x) dx one can use Laplace’s method.

Assume f has a unique maximum xm ∈ (a, b) and that f is twice (continuously)
differentiable with f ′′(xm) < 0. Then,

lim
n→∞

∫ b
a
enf(x) dx√
2π

n|f ′′(xm)|e
nf(xm)

= 1,

i.e., for very large n, ∫ b

a

enf(x) dx ≈

√
2π

n|f ′′(xm)|
enf(xm).

Derive the latter formula in a non-rigorous way using a Taylor expansion to second
order and just assuming that the remainder term behaves nicely. (You may use the
fact that

∫∞
−∞ e

−x2 dx =
√
π.)

(c) Use the results from part a) and b) to derive (in a non-rigorous way) Stirling’s
approximation

n! ≈
√

2πn
(n
e

)n
for large n.
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Bonus Problem [3 extra points]

Note: The bonus problems go a bit beyond what is covered in class, and problems like that
will not be posed in the exams.

In Homework 6 we studied convexity a bit closer and derived Jensen’s inequality. Now,
using convexity of − ln, one can prove Young’s inequality for products. It states that for
positive real x, y and p, q with 1

p
+ 1

q
= 1,

xy ≤ xp

p
+
yq

q
.

With that inequality at hand, one can prove the following generalization of the Cauchy-
Schwarz inequality. For positive p, q with 1

p
+ 1

q
= 1,

∣∣∣∣ ∫ b

a

f(x)g(x) dx

∣∣∣∣ ≤ (∫ b

a

|f(x)|p dx
)1/p (∫ b

a

|g(x)|q dx
)1/q

.

This is called Hölder’s inequality. Prove these two inequalities.
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