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1. (6 points) Consider the matrix

A =

(
1 1
0 1

)
.

Which of the following is true?

A. The eigenvalue λ = 1 has algebraic multiplicty 1.

B. * The eigenvalue λ = 1 has algebraic multiplicty 2.

C. * The eigenvalue λ = 1 has geometric multiplicty 1.

D. The eigenvalue λ = 1 has geometric multiplicty 2.

E. The matrix is diagonalizable.

F. * The matrix is NOT diagonalizable.

2. (4 points) Consider the set

P =


x
y
z

 ∈ R3 : 7x+ 2y − 5z = 0

 ⊂ R3.

Note that P describes a plane through the origin, and is thus a vector space itself. Which
of the following is a basis for P? Note that only one answer is correct here.

A.

 5
0
−7

 ,

0
5
2

.

B.

 5
0
−7

 ,

 0
−5
2

.

C.

5
0
7

 ,

10
5
2

.

D.

5
0
7

 ,

10
0
14

.

E.

5
1
7

 ,

10
6
14

.

F. *

5
0
7

 ,

0
5
2

.
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3. (4 points) Compute the determinant of the matrix

A =

3 0 2
1 2 4
2 1 1

 .

A. detA = 0.

B. detA = 2.

C. detA = 14.

D. * detA = −12.

E. detA = 8.

F. detA = −6.

4. (6 points) Consider the matrix

A =

 2 2 2 2
17/10 1/10 −17/10 −1/10
3/5 9/5 −3/5 −9/5

 .

A has a singular value decomposition A = UΣV ∗ with

U =
1

5

5 0 0
0 3 −4
0 4 3

 , Σ =

4 0 0 0
0 3 0 0
0 0 2 0

 , V ∗ =
1

2


1 1 1 1
1 1 −1 −1
−1 1 1 −1
1 −1 1 −1

 .

Which of the following statements are true?

A. rank(A) = 3, nullity(A) = 0.

B. rank(A) = 3, nullity(A) = 4.

C. * rank(A) = 3, nullity(A) = 1.

D. rank(A) = 4, nullity(A) = 3.

E. V is Hermitian.

F. * V is unitary.
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5. (6 points) Consider the system of linear equations

x1 + 2x2 = 1,

3x1 + αx2 = 3,

with parameter α ∈ R. Which of the following statements are true?

A. For α = 6, the system of equations has no solutions.

B. For α = 6, the system of equations has a unique solution.

C. * For α = 6, the system of equations has infinitely many solutions.

D. For α ̸= 6, the system of equations has no solutions.

E. * For α ̸= 6, the system of equations has a unique solution.

F. For α ̸= 6, the system of equations has infinitely many solutions.

6. (6 points) A system of linear equations Ax = b has been brought, through Gaussian
elimination, into the reduced row-echelon form (in augmented matrix notation)

1 0 0 4
0 1 0 −2
0 0 1 2
0 0 0 0

∣∣∣∣∣∣∣∣
5
7
3
0

 .

Which of the following statements are true?

A. The general solution to this system can be written as x =


4
−2
2
−1

+λ


5
7
3
0

, for λ ∈ R.

B. * The general solution to this system can be written as x =


5
7
3
0

 + λ


4
−2
2
−1

, for

λ ∈ R.

C. The general solution to this system can be written as x =


5
7
3
0

+λ


4
−2
2
0

, for λ ∈ R.

D. * The kernel of A is span




4
−2
2
−1


 .

E. The kernel of A is 3.

F. * The rank of A is 3.
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7. (6 points) Consider the vectors

a =

2
1
4

 , and b =

 3
−2
−1

 .

Which of the following statements are true?

A. * The vectors a and b are orthogonal.

B. The vectors a and b are NOT orthogonal.

C. The cross product of a and b is a× b =

 7
−14
−7

.

D. * The cross product of a and b is a× b =

 7
14
−7

.

E. * The length of a is |a| =
√
21.

F. The length of a is |a| = 7.

8. (4 points) A matrix has characteristic polynomial p(x) = x2 − 6x+ 13. Find the roots
of p(x), i.e., the solutions to p(x) = 0.

A. The roots are x1 = 3 +
√
22 and x2 = 3−

√
22.

B. The roots are x1 = 3 +
√
2i and x2 = 3−

√
2i.

C. There is only one root x1 = 3.

D. The roots are x1 = 2 + 3i and x2 = 2− 3i.

E. * The roots are x1 = 3 + 2i and x2 = 3− 2i.

F. The roots are x1 = −1 and x2 = 7.

9. (6 points) Let A be an n× n matrix. Which of the following statements are equivalent
to “The matrix A is invertible”?

A. * The columns of A are linearly independent.

B. * The determinant of A is nonzero.

C. A has at least one eigenvalue zero.

D. The nullity of A is equal to n.

E. The determinant of A is 0.

F. * The system of linear equations Ax = b has a unique solution for any b ∈ Rn.
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10. (4 points) Let

A =

(
1 1
1 1

)
, B =

(
2 0
2 2

)
, C =

(
3 3
0 3

)
.

Calculate the matrix product ABC.

A.

(
6 12
1 18

)
.

B.

(
24 24
2 6

)
.

C. *

(
12 18
12 18

)
.

D.

(
6 6
6 6

)
.

E.

(
6 6
12 18

)
.

F.

(
3 3
4 5

)
.

11. (6 points) Let A be an n× n matrix. Which of the following statements are true?

A. * A is diagonalizable if and only if the algebraic multiplicity equals the geometric
multiplicity for every eigenvalue.

B. A is diagonalizable if and only if all eigenvalues are distinct.

C. A is always diagonalizable.

D. * A might or might not be diagonalizable.

E. A is diagonalizable if and only if it is Hermitian.

F. A is diagonalizable if and only if detA = 0.

12. (6 points) Suppose U is a unitary n× n matrix. Which of the following is true?

A. * U∗ = U−1.

B. The determinant of U is real.

C. * All eigenvalues of U have absolute value 1.

D. U∗ = U .

E. * |Ux| = |x| for all vectors x ∈ Cn.

F. All eigenvalues of U are real.
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13. (6 points) Consider the vector space of polynomials of degree smaller or equal 2 with
real coefficients. As discussed in class, the set

B = {1, x, x2}

is a basis of this vector space. Which of the following statements are true?

A. * In the basis B, the polynomial p(x) = 3x2 + 5 has coordinates (5, 0, 3).

B. In the basis B, the polynomial p(x) = 3x2 + 5 has coordinates (3, 2, 5).

C. In the basis B, the linear operator d
dx

is represented by the matrix

1 0 0
0 2 0
0 0 3

.

D. * In the basis B, the linear operator d
dx

is represented by the matrix

0 1 0
0 0 2
0 0 0

.

E. In the basis B, the polynomial p(x) = 7x+ 8 has coordinates (7, 8, 0).

F. In the basis B, the polynomial p(x) = 7x+ 8 has coordinates (7, 1, 8).

14. (4 points) Consider the matrices

S =


1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

 , L =


1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1

 , U =


1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

 .

Check whether S = LU is a valid LU decomposition. If the decomposition is valid, then
use L and U to compute det(S).

A. S ̸= LU .

B. S = LU and det(S) = 2.

C. * S = LU and det(S) = 1.

D. S = LU and det(S) = −1.

E. S = LU and det(S) = −2.

F. S = LU and det(S) = 20.
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15. (6 points) Which of the following statements is true?

A. Only invertible real square matrices have QR decompositions.

B. * Every real m× n matrix with m > n has a QR decomposition.

C. * Every invertible real square matrix has a QR decomposition.

D. * Every real square matrix has a QR decomposition.

E. Only real square matrices have QR decompositions.

F. If a matrix has a QR decomposition, then its determinant must be ±1.

16. (6 points) Consider the matrix

A =

 1 1 i
1 2 7
−i 7 4

 .

Which of the following is true?

A. * A is Hermitian.

B. A is NOT Hermitian.

C. A has purely imaginary eigenvalues.

D. A is unitary.

E. * A is normal.

F. A is NOT normal.
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17. (12 points)

Compute the inverse of the matrix

A =

1 0 1
2 1

2
1

0 1
2

−1
2

 .

(Here, you need to write down all steps of your solution in order to receive full points.)

Solution: One could use either Gaussian elimination or the classical adjoint to find the
inverse. We skip the steps of the solution. The result is

A−1 =

−3 2 −2
4 −2 4
4 −2 2

 .
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18. (12 points)

Compute all eigenvalues of the matrix

A =

0 1 0
0 1 6
0 1 2

 .

(Here, you need to write down all steps of your solution in order to receive full points.)
Is the matrix A diagonalizable? (Here, you get full point only if you justify your answer
correctly.)

Solution: We compute the zeroes of the characteristic polynomial. We find

0 = det

−λ 1 0
0 1− λ 6
0 1 2− λ

 = (−λ)(1−λ)(2−λ)−(−λ)6 = −λ3+3λ2+4λ = λ(λ2−3λ−4).

Hence, the eigenvalues are
λ1 = −1, λ2 = 0, λ3 = 4.

In class we proved that matrices with all eigenvalues different are diagonalizable. This is
the case here, so A is diagonalizable.
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19. (12 points) Compute a singular value decomposition of the matrix

A =

(
2 2
−1 1

)
.

(Here, you need to write down all steps of your solution in order to receive full points.)

Solution: We compute

AAT =

(
2 2
−1 1

)(
2 −1
2 1

)
=

(
8 0
0 2

)
and

ATA =

(
2 −1
2 1

)(
2 2
−1 1

)
=

(
5 3
3 5

)
.

The matrix ATA is already diagonal, and its eigenvalues are λ1 = 8, with normalized
eigenvector (1, 0)T , and λ2 = 2, with normalized eigenvector (0, 1)T . The singular values
are hence

√
8 and

√
2.

The matrix ATA must have the same eigenvalues as AAT , i.e., 8 and 2. Corresponding
normalized eigenvectors are computed in the following way:(

5− 8 3
3 5− 8

)(
x1

x2

)
=

(
0
0

)
⇒

(
x1

x2

)
=

1√
2

(
1
1

)
and (

5− 2 3
3 5− 2

)(
x1

x2

)
=

(
0
0

)
⇒

(
x1

x2

)
=

1√
2

(
−1
1

)
.

Hence, a possible singular value decomposition is

A =

(
1 0
0 1

)
︸ ︷︷ ︸

U

(√
8 0

0
√
2

)
︸ ︷︷ ︸

Σ

1√
2

(
1 1
−1 1

)
︸ ︷︷ ︸

V T

.
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