Elements of Linear Algebra

Homework 5 (covering Weeks 9 and 10)

Due on November 12, 2025, before the tutorial! Please submit on moodle.

Problem 1 [4 points]

A graph is a mathematical structure consisting of a set $V = \{v_1, \dots, v_n\}$ of vertices and a set E of edges between these vertices. The adjacency matrix of a graph is a matrix A such that

$$A_{i,j} = \begin{cases} 1 & \text{there is an edge connecting } i \text{ and } j \\ 0 & \text{otherwise} \end{cases}.$$

A walk of length k on a graph is a sequence of vertices $v_{i_1}, v_{i_2}, \ldots, v_{i_k}$ such that any two successive vertices have an edge connecting them. More precisely, for any j, v_{i_j} and $v_{i_{j+1}}$ are connected. The total number of walks from vertex v_i to vertex v_j is given by the (i, j) entry of A^k . Consider a graph with three vertices $V = \{v_1, v_2, v_3\}$ such that there are edges between v_1 and v_2 , v_2 and v_3 , and v_1 and v_3 . Find the number of walks of length k = 10 starting at v_1 and ending at v_2 .

Problem 2 [4 points]

In class, we briefly discussed the Jordan normal form. Just to get an idea how it can be useful, let us consider the matrix

$$J = \left(\begin{array}{cc} \lambda & 1\\ 0 & \lambda \end{array}\right),$$

with some $\lambda \in \mathbb{R}$. Find a general formula for J^k for any $k \in \mathbb{N}$. Hint: Start by computing J^2 , J^3 , and then find the general pattern. It is also a good exercise to write down a nice clear proof of the formula using induction.

Problem 3 [4 points]

Show that the matrix

$$U = \left(\begin{array}{cc} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{i}{\sqrt{2}} & \frac{i}{\sqrt{2}} \end{array}\right)$$

is unitary, and compute all the eigenvalues and eigenvectors.

Problem 4 [4 points]

A general unitary 2×2 matrix can be written in the form

$$U = \left(\begin{array}{cc} a & b \\ -e^{i\varphi} \overline{b} & e^{i\varphi} \overline{a} \end{array} \right),$$

where $a,b \in \mathbb{C}$ such that $|a|^2 + |b|^2 = 1$, and $\varphi \in [0,2\pi)$. For matrices of this form, check explicitly the following properties of unitary matrices that we stated in class: that the columns are orthonormal, that the rows are orthonormal, and that $U^{\dagger} = U^{-1}$. Also compute the determinant of U, and verify that it has absolute value one. (The computation of eigenvalues and eigenvectors is a bit lengthy, so let us skip it here.)

Problem 5 [4 points]

Show that for anti-Hermitian matrices all eigenvalues are purely imaginary or zero, i.e., that they can be written as $\lambda = i\alpha$ with $\alpha \in \mathbb{R}$.

Bonus Problem [8 points]

Let us consider the Hermitian matrix

$$H = \frac{\pi}{4} \left(\begin{array}{cc} 1 & i \\ -i & 1 \end{array} \right).$$

Compute e^{iH} in two different ways: first, by diagonalizing H, and second, by directly computing the power series (think about what H^2 is, and deduce from that what H^k is). Verify that the resulting matrix is unitary.