Week 7: The determinant and eigenvalues

 $(1) \qquad \boxed{ \text{Multiple choice} } \qquad \boxed{ \text{One answer only} }$

Consider the linear transformation given by the matrix.

$$T = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6 & 7 & 8 \end{bmatrix}$$

Is T invertible? Why? (Hint: Pay attention to the first three rows.)

- a. T is invertible because det(T) = 0
- b. T is not invertible because $det(T) \neq 0$
- c. T is invertible because $det(T) \neq 0$
- d. T is not invertible because det(T) = 0

Consider the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ that has the following values on the basis elements:

$$T:(1,0,0)\mapsto (-1,0,1)$$

$$T:(0,1,0)\mapsto(3,-2,-1)$$

$$T:(0,0,1)\mapsto (1,1,1)$$

Is T invertible? Why?

- a. T is invertible because det(T) = 0
- b. T is not invertible because det(T) = 0
- c. T is invertible because $det(T) \neq 0$
- d. T is not invertible because $det(T) \neq 0$
- (3) $\overline{ }$ Multiple choice $\overline{ }$ One answer only

Use Cramer's rule to solve for y in

$$A\vec{x} = \begin{bmatrix} 2 & 6 & 2 \\ 1 & 4 & 2 \\ 5 & 9 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \vec{b}.$$

- a. 2
- b. -1
- c. 1
- d. -2
- (4) Multiple choice One answer only

Use Cramer's rule to solve for y in

$$ax + by + cz = 1$$

$$dx + ey + fz = 0$$

$$gx + hy + iz = 0.$$

You can assume that the relevant 3×3 matrix has non-zero determinant D.

a.
$$\frac{ei - fh}{D}$$
b.
$$\frac{fh - ei}{D}$$
c.
$$\frac{fg - di}{D}$$
d.
$$\frac{di - fg}{D}$$

$$(5)$$
 Multiple choice One answer only

Use Cramer's rule to solve for x_1 in

$$2x_1 + x_2 = 1$$
$$x_1 + 2x_2 + x_3 = 0$$
$$x_2 + 2x_3 = 0.$$

a.
$$\frac{1}{2}$$
b. $\frac{3}{4}$
c. $\frac{3}{4}$
d. $\frac{1}{4}$

Compute the inverse of the matrix (try using the classical adjoint)

$$H = \begin{bmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix}$$

where a, b, c are arbitrary real numbers.

a.
$$\begin{bmatrix} 1 & 0 & 0 \\ -a & 1 & 0 \\ ab - c & -b & 1 \end{bmatrix}$$
b.
$$\begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ c - ab & b & 1 \end{bmatrix}$$
c.
$$\begin{bmatrix} 1 & -a & ab - c \\ 0 & 1 & -b \\ 0 & 0 & 1 \end{bmatrix}$$
d.
$$\begin{bmatrix} 1 & a & c - ab \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix}$$

Compute the inverse of the matrix (try using the classical adjoint)

$$R_{\theta} = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$

where θ is an arbitrary real number.

- a. $R_{\theta^{-1}}$
- b. $-R_{\theta}$
- c. $-R_{\theta}$
- d. $R_{-\theta}$
- (8) Multiple Choice One answer only

Find the eigenvalues and the associated eigenvectors of the matrix

$$A = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}.$$

a.
$$\lambda_1 = \sqrt{2}, v_1 = (1, \sqrt{2} - 1)$$

b.
$$\lambda_1 = 1, v_1 = (\sqrt{2} - 1, 1)$$

$$\lambda_2 = -1, v_2 = (\sqrt{2} + 1, 1)$$

c.
$$\lambda_1 = 1, v_1 = (1, \sqrt{2} - 1)$$

$$\lambda_2 = -1, v_2 = (1, -\sqrt{2} - 1)$$

d.
$$\lambda_1 = \sqrt{2}, v_1 = (1, 1)$$

 $\lambda_2 = -\sqrt{2}, v_1 = (1, -1)$

(9) Multiple Choice One answer only

Find the eigenvalues and the associated eigenvectors of the matrix

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}.$$

a.
$$\lambda_1 = 0, v_1 = (-2, -1)$$

$$\lambda_2 = 5, v_2 = (-1, 2)$$

b.
$$\lambda_1 = 0, v_1 = (2, 1)$$

$$\lambda_2 = 3, v_2 = (1, 3)$$

c.
$$\lambda_1 = 0, v_1 = (2, -1)$$

$$\lambda_2 = 5, v_2 = (1, 2)$$

d.
$$\lambda_1 = 1, v_1 = (2, 1)$$

$$\lambda_2 = 5, v_2 = (1, 2)$$

(10) Multiple choice One answer only

Find all eigenvalues and associated eigenvectors of the matrix

$$A = \begin{bmatrix} 7 & 0 & -3 \\ -9 & -2 & 3 \\ 18 & 0 & -8 \end{bmatrix}.$$

a.
$$\lambda_1 = \lambda_2 = -2, v = (t, s, 3t)$$
 for $s, t \in \mathbb{R}$ and $\lambda_3 = 1, v_3 = (1, -1, 2)$

b. All eigenvalues are zero.

c.
$$\lambda_1 = \lambda_2 = 1, v = (1, 0, 3)$$
 and $\lambda_3 = 2, v_3 = (1, -1, 2)$

d.
$$\lambda_1 = \lambda_2 = -2, v = (1, 0, 3)$$
 and $\lambda_3 = 1, v_3 = (1, -1, 2)$

Total of marks: 10