Stochastic Modeling and Financial Mathematics

Quiz 6

1. (8 points) Recall that an Itô process X(t) is the solution to the stochastic differential equation (SDE)

$$dX(t) = f(X(t), t) dt + g(X(t), t) dW(t).$$

Recall that for functions F(X(t), t), Itô's lemma says that

$$dF = \left(\frac{\partial F}{\partial t} + \frac{\partial F}{\partial x}f + \frac{1}{2}\frac{\partial^2 F}{\partial x^2}g^2\right)dt + g\frac{\partial F}{\partial x}dW.$$

- (a) How does Itô's lemma simplify if X(t) = W(t), i.e., X(t) is just Brownian motion?
- (b) Now consider X(t) = W(t) and

$$S(W(t), t) = e^{\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W(t)}.$$

What SDE does this S satisfy?

(c) Now consider X(t) = S(t) and the function $F(S(t), t) = S(t)^2$. What SDE does this F satisfy? What is the expectation value of F(t)?

2. **(6 points)** We consider the following python program.

```
from pylab import *
T = 1.0
N = 500
dt = T/N
M = 4000
dW = normal(0, 1, (M,N))*sqrt(dt)
W = c_{zeros}(M), cumsum(dW, axis=1)
mu = 0.7
sigma = 0.4
Y = c_{\text{ones}}(M), \text{ cumprod}(\exp(dt*(mu-0.5*sigma**2) + sigma*dW), axis=1)]
Ymean = mean(Y, axis=0)
Ystd = std(Y, axis=0)
Yplot = Y[:6,:].T
t = linspace(0,T,N+1)
figure()
plot (t,Ymean, 'b',
      t, Ymean+Ystd, 'r',
      t, Yplot, 'k:',
      t, Ymean-Ystd, 'r')
show()
```

Draw the output of this program.

3. (6 points) Note that the function F(S(t),t)=(1+t)S(t) satisfies the SDE

$$dF = \left(\mu + \frac{1}{1+t}\right)Fdt + \sigma FdW(t),$$

with S(t) geometric Brownian motion (with parameters μ, σ). Now consider the following python program:

```
from pylab import *
T = 1.0
N = 20000
tt, dt = linspace(0,T,N+1,retstep=True)
mu = 0.5
sigma = 3.0
dW = normal(0, sqrt(dt), N)
W = r_{0,cumsum(dW)}
S = \exp((mu-sigma**2/2)*tt + sigma*W)
F = zeros(N+1)
F[0] = S[0]
#Euler Maruyama
for i in range(N):
    ???
Fexact = (1+tt)*S
figure()
plot(tt, F, 'bo',
     tt, Fexact, 'g-')
show()
```

- (a) Briefly (one or two sentences) describe what this python program is doing.
- (b) Add the right code in the "for" loop (???) to make the Euler-Mayurama method work.