Elements of Calculus Prof. Sören Petrat, Constructor University Lecture notes from Spring 2025

3. Differentiation in One Variable

3.2 Theorems and Applications

Topic for Week 5 A: Theorems of Differentiation

Today we discuss several weeful theorems that hold for differentiable functions. (Similar to the Extreme and Intermediate Value Theorems for continuous functions.)

We start with:

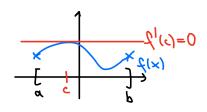
Theorem: let
$$f:(q,b) \rightarrow TR$$
 be differentiable. If f has a maximum or
minimum at $c \in (q,b)$, then $f'(c) = 0$.

Proof: We consider just the case where f has a maximum at c. Then
$$f(c+h) \leq f(c)$$
 for
Small enough $|h|$. Then:
 $\cdot |f|_{h} > 0: \frac{f(c+h)-f(c)}{h} \leq 0$, so also $\lim_{h \ge 0} \frac{f(c+h)-f(c)}{h} \leq 0$
 $= f^{1}(c)$, since f differentiable
 $\cdot |f|_{h} < 0: \frac{f(c+h)-f(c)}{h} \geq 0$, so also $\lim_{h \ge 0} \frac{f(c+h)-f(c)}{h} \geq 0$
 $= f^{1}(c)$, since f differentiable
 $= \sum \operatorname{Since} f^{1}(c) \leq 0$ and $f^{1}(c) \geq 0$ must hold, we conclude $f^{1}(c) = 0$.

Session g (Week 5A)

Note: The other way around does not hold. E.g.,
$$f(x) = x^3$$
 has
 $f'(x) = 3x^3$, i.e., $f'(0) = 0$, but $f(h) > 0$ $\forall h > 0$ and $f(h) < 0$ $\forall k < 0$, $f'(x) = 0$, but us
so f does not have a max or nim. at 0.

Theorem (Rolle): let
$$f:[a,b] \rightarrow \mathbb{R}$$
 be continuous and
differentiable on (a,b). If $f(a) = f(b)$, then there exists a
 $c \in (a,b)$ s.t. $f'(c) = 0$.



Proof: Since
$$f$$
 is continuous on $[a_1b]$, the Extreme Value Theorem applies, i.e., f has its max. and min. in $[a_1b]$. Since $f(a) = f(b)_1 a_1$ least one of them lies in (a_1b) (unless $f = coust$, where $f^{(1)} = 0$ holds anyway)_1 so the previous theorem applies and proves the result. \Box

What if
$$f(a) \neq f(b) \stackrel{?}{\rightarrow}$$
 We shift f (inearly and reduce to the previous case
Def. $h(x) := f(x) - (f(a) + (x - a) \frac{f(b) - f(a)}{b - a})$. Then $h(a) = 0 = h(b)$.
So $\operatorname{Pol}(e^{l_{s}} + lum. implies : \exists c \in (a,b) s.t. 0 = h'(c) = f^{l}(c) - \frac{f(b) - f(a)}{b - a}$
 $= > f^{l}(c) = \frac{f(b) - f(a)}{b - a}$.
We have proven:

Theorem (lagrange, or Mean Value Theorem (MVTI): $[a_1b] \rightarrow TR \text{ be continuous and differentiable on (a,b). Then there exists Ce(a,b) s.t.$ $<math display="block"> f'(c) = \frac{f(b) - f(a)}{b - a}.$

Example: let
$$f(x) = ln(x)$$
 and consider the internal $[1,x]$. Since $f'(x) = \frac{1}{x}$, the MVT says:
 $\exists c \in (1,x) \text{ s.t. } f'(c) = \frac{1}{c} = \frac{ln(x) - ln(1)}{x - 1} = \frac{ln(x)}{x - 1} = > ln(x) = \frac{x - 1}{c}$.
From this we can infer: \cdot Since $c > 1$: $ln(x) < x - 1$ $\forall x > 1$.
 \cdot Since $c < x$: $ln(x) > \frac{x - 1}{c} = 1 - \frac{1}{x}$ $\forall x > 1$.

$$\int \frac{1}{|w(x)|} = 1 - \frac{1}{x}$$

Another implication of the MVT:
• If
$$f'(x) \ge 0$$
, then f is increasing on (a_1b) .
• If $f'(x) \le 0$, then f is decreasing on (a_1b) .
Why? $\forall \times_n(x_2 \in (a_1b))$ with $\times_n(x_2) = f(x_1, x_2)$ s.t. $\frac{f(x_2) - f(x_1)}{(x_2 - x_1)} = \frac{f'(c)}{(f \ge 0, then f(x_2) \ge f(x_1)}$.
 $(f \le 0, then f(x_2) \le f(x_1)$.

Mext: MVT for two functions => Use
$$g(b)$$
 and $g(a)$ instead of b and a above.
Def. $\tilde{h}(x) := f(x) - (f(a) + (g(x) - g(a))) \frac{f(b) - f(a)}{g(b) - g(a)}$. Then $\tilde{h}(a) = 0 = \tilde{h}(b)$.
So $\operatorname{Pol}(e^{l_{3}} + lum. implies : \exists c \in (a,b) st. 0 = \tilde{h}^{l}(c) = f^{l}(c) - g^{l}(c) \frac{f(b) - f(a)}{g(b) - g(a)}$.
 $=> \frac{f^{l}(c)}{g^{l}(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$ (assuming $g^{l}(c) \neq 0$).
Can $g(b) = g(a)$? Not if we assume $g^{l}(x) \neq 0$ $\forall x \in (a,b)$.
14 follows:

Theorem ((archy): (ef f,g: [a,b] — TR be continuous and differentiable on (a,b) with g'(x)=0
$$\forall x \in (a,b)$$
. Then $g(a) \neq g(b)$ and $\exists c \in (a,b)$ s.t. $\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$.

Theorem (L'Hopital's Role): let f,g: (a,b) - TR be differentiable with
$$g'(x) \neq 0$$
 $\forall x \in (a,b)$.
If $\exists c \in (a,b)$ s.t. $\lim_{x \to c} f(x) = 0 = \lim_{x \to c} g(x)$, then $\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$.

This rule can be generalized to:
• one-sided limits
•
$$f(x)_{ig}(x) \longrightarrow \infty$$
 (instead of 0)
• $c = \infty$
• f_{ig} not differentiable in c but $\lim_{x \to c} \frac{f'(x)}{g'(x)}$ exists
Example: $\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cos x}{1} = 1$.