

# Linear Algebra

## Homework 1

Due on February 11, 2026, before the tutorial!

### **Problem 1 [5 points]**

Let  $W \subset V$  be a subspace. Show that  $(V \setminus W) \cup \{0\}$  is a subspace of  $V$  if and only if  $W = \{0\}$  or  $W = V$ .

### **Problem 2 [5 points]**

- (a) Let  $V$  be a vector space. Prove that for any subset  $S \subset V$ ,  $\text{span}(S)$  is a subspace.
- (b) Prove that the span of  $S$  is equal to the intersection of all subspaces of  $V$  that contain  $S$ .

### **Problem 3 [5 points]**

Consider the space of real  $n \times n$  matrices. Which of the following matrices form a subspace? Give a brief and concise proof for each case.

- (a) orthogonal matrices
- (b) invertible matrices
- (c) matrices with trace zero
- (d) symmetric matrices
- (e) antisymmetric matrices

### **Problem 4 [5 points]**

Prove that  $\mathbb{R}$  as a vector space over  $\mathbb{Q}$  is infinite dimensional.